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Appendix B, page 36:

Equations (Bl0Oa) and (B1Ob) should read:

Ze = 0.1k <?E i;i w>12 B YE—;ég—iﬁ < 1.37 (B10a.)
Zo = 0.14 (VE iiz 6w>12 45[1 - 1.07h xi 8(;%8 - gfé + 2:?;%8) 5 ?iSS) ..;>}
v <?E i;: f> <;%8 B 2%5 - 21??%8) ) 3{?ﬁ?8) * "'> ;
B i;: Ow o 1.37 (B10b)

The coefficients 0.14 and 39 in these equations replace the values given in
the report which were in error by a factor of 2. The table of values of Ze,
table IT, page 61, and the corresponding values of Ne in the figures are
correct as given in the report.
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AFRODYNAMTC HEATTING OF CONICAL ENTRY VEHICLES AT SPEEDS
IN EXCESS OF EARTH PARABOLIC SPEED

By H. Julian Allen, Alvin Seiff,
and Warren Winovich

SUMMARY

The aerodynamic heating characteristics during Earth's atmosphere entry at
speeds greater than Earth parabolic speed are calculated for vehicles of conical
shape. Ablative heat shields are assumed for these bodies and both laminar and
turbulent boundary layers are considered. It is shown that if conical shape can
be maintained, an optimum cone angle will exist and a cone of this angle will be
superior to the more usual blunt entry shapes at speed well in excess of para-
bolic speed. The improvements result from the fact that radiative heat-transfer
contributions from the shock layer are much reduced for the cones so that,
although the convective contributions are increased, a net gain is realized. For
optimum coneg, the approximate analysis indicates that the convective contribu-
tions constitute 85 to 90 percent of the total heating. Solutions to the problem
of maintaining conical shape as ablation progresses are considered, and some
experimental demonstrations of means for accomplishing this are presented.

INTRODUCTION

Interplanetary travel may require entry into planetary atmospheres at speeds
well in excess of parabolic speed in order to shorten trip times (ref. 1). Fig-
ure 1 shows trip time as a function of entry speed into Earth's atmosphere for
travel from Mars and Venus. There are limits which must be set for the maximum
entry speed allowable because of both the loads entailed (ref. 2) and the aero-
dynamic heating. In this report we shall be concerned only with the heating
aspects.

Up to the present time, atmosphere entry speeds have been sufficiently low
that aerodynamic heating has been essentially a convective process. Osborne
Reynolds long ago (ref. 3) showed that the molecular process by which a fric-
tional force is exerted on an aerodynamic surface is directly related to the
process by which heat can be convected to that surface. In consequence, it can
be shown {(ref. L) that the incremental quantity of energy in the form of heat
convected to an entry vehicle, 8H, is related to the increment in time, &t, by



the proportionality?
8H ~ FV &t (1)

where F 1s the total frictional force exerted on the vehicle. On the other
hand, the incremental change in kinetic energy in the same interval is given by

BE = DV &t (2)
where D 1is the total drag force experienced by the vehicle. It follows that

F
B ~ = 8T (3)

Let us consider that the ratio of the friction force to the drag remains
eggsentially constant. The total energy in the form of heat convected to the
vehicle during entry is then proportional to the total kinetic energy change
which occurs during entry, and, for a vehicle which is not to be destroyed on
landing at the planet's surface, this total kinetic energy is simply the kinetic
energy of the vehicle at entry to the atmosphere. To minimize the convective
heating, then, one must choose a vehicle shape with the smallest ratio of fric-
tional force to total drag force. Thus one chooses blunt shapes for which pres-
sure drag is high, in order that the drag coefficient may be made as large as
possible. The amount of heat transferred by convection depends upon whether the
boundary layer is laminar or turbulent. At the usual Reynolds numbers character-
istic of entry, it is advantageous to have laminar flow. Accordingly, one
strives to maintain such a flow. Also most entry bodies employ ablative ghields
for heat protection. In part, ablative systems are used because the ablating
vapors fend off the air and so reduce the shear in the boundary layer from what
it would be in the absence of these vapors, and, hence, the convective heat
transfer as well, Under optirum conditions of high pressure drag and low fric-
tional force, the fraction of the total kinetic energy convected to the entry
vehicle can be kept very low indeed - of the order of l/lO of 1 percent or less.

When, now, one considers the higher entry speeds desired in the future, one
finds it difficult to prevent the heat transfer for a blunt body from increasing
rapidly with increase in speed because convection is no longer the sole important
heating mechanism involved. In the new speed regime the air which enters the bow
shock layer undergoes such high molecular excitations that it becomes a powerful
source of radiative energy. This process is well described in the literature
(e.g., refs. 5 to 10). At this point it is only necessary to note that the most
important radiative contribution to aercdynamic heating varies with velocity by
as much as the fifteenth power and almost directly as the density. Hence,
although for entry at near-Earth satellite speed the radiative contribution for
a blunt body is usually trivial, it tends to become overwhelming at speeds well
in excess of Earth parabolic speed. One is led, therefore, to re-examine the
effect of vehicle shape when radiative contributions to heating are important.

111 symbols are defined in appendix A.
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To this end, consider the conical body shown in figure 2. As an entry vehicle,
it has the disadvantage of its drag coefficient being less than that for an
essentially flat-faced body so that, other factors being equal, it must accept a
larger convective heat load. On the other hand, the radiation per unit of shock
layer volume depends upon excitation of the gas in the shock layer and so depends
upon the component of veloecity normal to the bow shock. This radiation varies

as about the fifteenth power of the sine of the shock angle. Thus, at suffi-
ciently high entry speeds, a reduction in shock angle, which increases convective
heat input but greatly reduces the radiative heat input, can provide a net gain.
Under these conditions it is to be expected that an optimum cone angle exists for
any given set of entry conditions. It is the purpose of this paper to analyze
entry bodies of conical shape to find these optimums. The metric system of units
(kilogram-meter-second) are employed throughout this analysis.

ANATYSIS

The rate of energy input in the form of heat to an entry body may be written
(ref. 11)

a1 3
= = CuoV3A i
it 2 BHP (%)

A number of assumptions will be made to simplify the analysis. The first
two are that aerodynamic 1lift is zero and that during the time the heating
rrocess 1s important, the deceleration is large compared to the acceleration of
gravity; hence, the gravitational effect can be ignored. In this case the
trajectory is essentially a straight line (ref. 4) so that the time rate of
change of altitude, Y, is

ay
—= = -V sin
T ¥ (5)

where vy is the flight-path angle as measured down from the local horizontal and
is constant. The third assumption is that the air density in the atmosphere
varies exponentially with altitude (see ref. k4, 11, or 12).

o = Do, = poe—BY , (6)

where p 1s the air density in terms of a reference sea-level density, Pos and
B is a constant.

From equations (5) and (6) then

ay do

at = - =
V sin vy BpV sin ¥




The fourth and fifth assumptions are that the drag coefficient is constant,
and that the mass remains essentially constant during the entry. Thus, from

reference L,
V2 = VEze_Bp (8)

where Vg 1s the vehicle speed at atmosphere entry and B 1s the ballistic
coefficient

Chp A
B = __2_3__H (9)
Bm sin ¥

where m 1is the entry body mass.

With equations (4), (7), and (8), the energy input to the entry vehicle in
the form of heat for the whole entry is

2
pv A 1 R
g=-oB " f Cge 2P a5 (10)
2B sin vy =0

The total kinetic energy change during entry is
1 2
E = - mv 11
> nivy (11)

since the final gspeed at landing is zero for a vehicle which is to land intact,
Then equations (9), (10), and (11) combined give the fraction of the total
kinetic energy which appears as heat to the vehicle, n, as

1 —
n=Bo2 cye PP ap (12)
H
E Cp p=0

The sixth assumption is that the heat shield is the ablation type for which
mass loss is only by the process of sublimation or vaporization. Let € Dbe the
heat required to bring a unit mass of ablator from the cold state through vapori-
zation expressed in kinetic energy units (i.e., in units of square of velocity).
Then the mass loss by ablation in terms of the entry vehicle mass will be

Am Vg
- =0 (5—5 (13)

We now proceed to determine the energy fractions, mn, as a function of entry speed
for conical bodies under the assumption (seventh) that the cone angle of the con-
ical body remains unchanged during ablation. To this end we determine 17 as the
sum of the contributions due to equilibrium radiative heating (denoted by ne),



the nonequilibrium radiative heating (denoted by nn), and either the laminar
convective heating (denoted by nz) or the turbulent convective heating (denoted
by nt). The eighth assumption is that each contribution may be calculated
independently of the other. Cases for mixed laminar flow and turbulent flow are
not treated but the limiting effect of approach to free-molecular flow is
included. The drag coefficient used in the evaluation of 1n 1is assumed to be
the Newtonian value (ninth assumption)

Cp = 2 sin? g (1k)

where O¢ 1s the half-cone angle. Thus, base pressure is ignored since the
speeds of interest are great, and effects of friction on drag are ignored on the
presumption that the cones of interest are never slender enough to warrant the
complication of including this effect.

Equilibrium Radiative Heating

For the purposes of this analysis it has been assumed (tenth and eleventh
assumptions) that the radiation per unit volume from a shock layer which is in
thermodynamic and chemical equilibrium is constant throughout the shock layer
(i.e., energy depletion due to radiation is ignored) and is nonabsorptive within
the layer. The equilibrium radiastion (appendix B) is, under these conditions,
determined solely by the density, p, ahead of the bow shock and the velocity
normal to 1t.

U =V sin 6y (15)

An examination of the available data indicates (see appendix B) that the
time rate of equilibrium radiation per unit volume of gas cap can be expressed
approximately for the lower speed range

dEe 9, .

—=CeU ' 5 5 U<Upp = 13,700 m/sec (16a)
and for the upper speed range

dEe A _

— = Ce U 25% 3 U>TUpe = 13,700 m/sec (16b)

wherein



p = 1.80
q, = 15.45
qs = 5.05
2 - seo\15: 45 (17)
= -40 _ B6 (B
Ce, = 6.14x10 —=z m_>
- cec 5.05
Cao. = 6.44x107® ——= _ [ =
€2 m sec3 \ M
J
The time rate of the total equilibrium radiation from the shock layer is
. dE
Ee = —e A" (1'8)
dv

and approximately half of this radiation is received by the body surface, if
there is no surface reflectivity. Then the equilibrium-radiation heat-transfer

coefficient is

(1/2)ke  (aBe/av)v

Cp_ = = (19)
He ™ (1/2)0vo poPVEA
where W
tan® 6,; - tan® @
_ 3 an W o~ arn e
v o= ﬁr—b )
3 tan® O > (20)
and
A = Tfl"b2 J
while for the ARDC standard atmosphere (ref. 13)
o, = 1.225 kg/m® (21)

so that from equations (16), (8), and (1k4), equation (12) becomes® for
VE < Ul’g/Sin 9w

2properly, the value of CHe should be made zero in the free-molecular

flow regime but the strong dependence of Mg OR P 1in equations (222) and (22b)
mekes the contribution of the integral to mn, for the free-molecular altitudes
negligible for vehicle weights and sizes of usual interest.
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q
-z [sin"1 oy(tan® - tan® 6 1 -(B/2 -1)p

Z — P
6 sin® o~ tan® 6 =
C C p=0 (22a)
and for Vg > Uy o/sin ey
. a
Q;-3 | sin 1 ew(tan2 By - tan® 8¢a) 1 -(B/z)(ql-l)ﬁ_p_l _
Ne = Bryce Ve C  iEaiias s e ) as
sin*= ¢ tan® g¢ =8, =
2
. 4 =3
qp-a [81n°2 Oyltan® 8y - tan® 60)7 rP™P1,2  -(B/2)(ap-1)6 4, .
* Prpcezle 6 sin® og tan® o © PP
C C p=0 (22b)
where
P VE sin ew W
SENCEL
.2 B Ui,2
15.45
ce, = SCL _ 5.0120-40 TE_ (sec > (23)
L Po sec3 \ m
2 s sec
c = —2 = 5,318%10 —_— | =
€2 Po 23 sec3 \ m > J
Details of the integrations of equations (22a) and (22b) are given in
appendix B. The solution may he given in the form
¥,z
bYe e
e = 6.5 (2k)

wherein Vo 1is a function of &g (see appendix B and table I) and Ze is a
function of Vg sin 6y (see appendix B and table II).

Nonequilibrium Radiative Heating

For the purposes of this analysis it has been supposed that the portion of
the shock layer which is not in thermodynamic and chemical equilibrium is con-
fined to a region so close to the bow shock wave that it may be considered to
originate at and be proportional to the area of the bow shock wave. In addition,
the nonequilibrium radiation process is regarded as one involving binary colli-
sions so that the radiation is independent of air density until "collision



limiting" occurs (see ref. 10 and appendix C) and is a function only of the
velocity normal to the shock wave (see eq. (15)). Collision limiting is presumed
to begin when p = 5cz’ and in the regime for which p < Poy the nonequilibrium
radiation is considered to vary directly with density. When the free-molecular
flow regime is reached (i.e., when p < 5fm)’ this radiation is set to be zero.
Thus, the time rate of nonequilibrium radiation per unit area of bow shock wave

is given as

dfin 5 SO = (25a)
5 = CalU s P> Bgy

dBn,  Cp

—_— = — 5US . 0 > 3> 05 2
ia Be 2 3 P 1 9] pfm ( 5b )
iz o

e (O B < Pep (25¢)

An examination of the availsble data indicated (see appendix C) that

Cp = 0.74x10722 sec*/m*

s =7 (26)
=~ - 10-3
Pey = 10

The total time rate of radiation from the gas cap which is not in equilibrium is
then

. ak
By = —= & (27)

and only half of this radiation is received at the wvehicle surface if the surface
reflectivity is zero. Then the nonequilibrium radiative heat-transfer coeffi-

cient is
(1/2)E, (ak,/da)s
= = 28
(1/2)pv°a 0, BVA (28)

CHn



where

2
. s tan’ QW
= 1y : 2
sin 8y tan' GC

(29)
A = qn®
while, again,
P = 1-225 kg/m3
so that from equations (25), (8), and (1L), equation (12) becomes
b 2
. S-1
- Bey53 <S;P: 6y tan® 6?> [/ﬁ -(B/2)(s-1)p a
n nE 2 sinZ QC tan® o¢ =5, 7
acl =
-(B/2)(s-
Pel 0 5fm
where
C
ep = EE = 0.60x10722 gec*/m* (31)
o

Details of the integration of equation (30) are given in appendix C. The
solution may be given in the form

= ¥,0p <i04> (32)

where ¥, 1is a function of ¢ (see appendix C and table I) and ¢, is a
function of B (see appendix C and table III).

Laminar Convective Heat Transfer

Calculation of the laminar convective heat-transfer coefficients as a
function of velocity, air density, and cone angle was made by the procedure
given in appendix D. In the absence of ablation it is indicated that the heat-
transfer coefficient may be expressed as (sub zero indicates no ablation)

(33)



where c¢; and j are functions of the velocity V. When vapor ablation occurs,
the vapor layer fends off the alr and so reduces the convective heating. It is
assumed in this analysis that for ablation (twelfth assumption)

CH = <:.0;7'_ + UZ> CH (314_)
T\l + KV 2

where ) is an asymptotic lower limit when
K,V2 > (35)

and K; 1s a constant depending upon the ablative material and can be defined as
KZ = = (36)

wherein o; depends upon the molecular weight of the ablating vapors® and { is
the heat energy per unit mass (expressed in kinetic energy units of square of
velocity) required to heat the ablator from the cold state through vaporization.

As an approximation for speeds up to 13,000 m/s%c, the variable c; and
the j values may be replaced by the constants (see appendix D)

¢y, = 3.5x107% Wsin 20g , ml/2

C1

. (37)
J; =0
and at speeds above 26,000 m/sec, the variables can be approximated by the
constants
o \1* 17
CZ = 012 = 19.8 N’Sil’l 290 5 ml/2 <sec>
(38)
32 = 1.17

The foregoing applies in a continuum flow regime. In the free-molecular
flow regime, the fraction of the total kinetic energy which, converted to heat,
appears as heat to the vehicle is assumed to be one-half (ref. 15); that is to
say, in the free-molecular flow regime

C
CHZ -2 (39)

SThe value of @3 is 1/2 By, as defined in reference 1l.
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Of course the continuum results (egs. (33) and (34)) only apply when the
Knudsen number (ratio of air mean free path to body diameter) is very small com-
pared to unity; conversely, the free-molecular result (eq. (39)) only applies
when the Knudsen number is very large compared to unity. A transition from one
regime to the other occurs when the Knudsen number is of order unity. Experiment
has indicated that the transition from one regime to the other is smooth (see,
e.g., ref. 16). TFor the present calculations it was deemed adequate to consider
that the continuum result applied at all air densities for which

1 - GY, > CZ CD
< in2
Cr. = + 0 - = = sin® 0 Lo
oy <1+KZV2 v 4 2 c (10)

NI

Within the free-molecular flow range, for the sizes and masses of entry vehicles
of interest in this analysis, the velocity can safely be taken to be the entry
velocity, Vm. Thus the continuum flow results will be applied for all air den-
sity ratios greater than

2

B = D(E_:!EL + GZ> - o ] (L41)
fm o\ + gy Vg g sin® 6q
with
£, = K3VEP (42)
and in the free-molecular flow range we take
oo = D in2 ) _ o =
Hy = 5 = 0% 0¢ 6 < Pey (43)

Finally, then, the laminar convective energy fraction may be written

BCZ(]_ - GZ) fl e-B[l-(j/Z)]{S ag
Ny = ] . 5
ovgd 1T, sin® 6p Boy (1 + &Ze'Bp),JE

; - o
Be,o 1 -Bl1-(3/2)1p .- fm _
+ ot = JF e - a5 g\/ﬁ e 45 (L)
EVEJ./rb sin 6 5fm N B o}

It is shown in appendix D that the solution of equation (L4) for the entry
speed range up to 13,000 m/sec may be given as

11



2
My =My, = Yzl / o [ - GZ)QZ + 1. -T720, - @Z ] - 2?11 <;b> T 5; + GZ>

(45)
and, for the entry speed range above 26,000 m/sec, as
Ny =Ny, = ngl e [(1 - 0y)0,, +2.7880, - 0, _]
(Vg/1 10%) rb 2 2
P <>l'°l+ >2 (46)
VE/104)2 34 \ry, / \1 + 3

where

¥, ,¥;, functions of 6 (see appendix D and table I)
Q7,,9;, functions of &; (see appendix D and table IV)
®1,,0;, functions of B (see appendix D and table ITI)

For speeds between 13,000 and 26,000 m/sec the values of N7 are assumed to
change smoothly from the first range to the second, and the following applies:

Define
\
Gy = ny, at Vg = 13,000 m/sec
Gz = ny, at Vg = 26,000 m/sec ()
Gg = (”11 at Vg = 13,000 m/sec) - (”11 at Vg = 12,000 m/sec)
Gq = (nzz at Vg = 27,000 m/sec) - (n12 at Vg = 26,000 m/sec) J
Then calculate
\
bg = Gy + 5(G2 - G1) - 52G5 - 26Ge
by = - <120 (Go - G;) + 80Gs + 50Ca
(48)
9o§> 5o§> uoé) ?
bo = (== G - G;) - (2= )CGs - [ =) @G
2 169 ( 2 1) 13 3 13 4
2000 1000 1000
b = ~ | —= Gz - G1) + | —=
s 2197>( 2 - G1) <169 <169> J
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so that for the speed range 13,000 m/sec < Vg < 26,000 m/sec
v Vo \2 Ve\3
E B B
= = — )+ bl —=] +basl— Ly
Ny = M35 = Po + P21 <1o;> = <;o;> ° <io;> (49)

Turbulent Convective Heat Transfer

The analysis of appendix E shows that in the absence of ablation the
turbulent heat-transfer coefficient can be expressed with reasonable accuracy by

6~ cos O c

C C t

Cgy, = - <:’ 204 .14 > (50)
o sink 6y sin 65 Vkﬁo 20 rbo 148

for 6¢ expressed in degrees of arc and,

for V sin 6y § 7,500 m/sec
cy = Cpy = 8.80x1077 m°* 2*8(deg) ~*(m/sec) "~ 68
(51a)
k =k, = -0.66
and for V sin oy 2 7,500 m/sec
ey = ¢y, = 1.35X1072 m®-1*8(deg) "1(m/sec)O 1
2 (51b)
k = ko = 0.16

The effect of vapor ablation to reduce the turbulent convective heat transfer can
be assumed in the form (twelfth assumption)

L - ot >
CH, = (———_ + g
H <i + KgvE O e,

&g
K.t=—‘

g

(52)

wherein a4 depends upon the molecular weight of the ablating vapors.?

reference, we shall use ot = 1/3 o7 in this report.

13



As in the case of laminar flow, one properly should consider separately the
free-molecular flow regime. However, the interest{ing turbulent flow cases are
those for which B is small (no more than a few hundred at most). With this
restriction the presumption that the continuum regime extends up to entry con-
ditions (p = 0) in calculating the heat transfer leads to negligible error.

Then equation (12) gives for

< 7500

= — m/sec
sin Gw

()5
. Bey, <2 6c cos 6¢ >f < 1 - ct s > e 45
t = t
VEkl 0.148 sinkl 3 50 \L + £ e” 50+204

Ty 6y sin” O¢

(532)

while for

Bet, 6¢ cos O L 1 - og a5
Tt = % k 3 B %t 0.204
Vg 1rbo.14a sin™t gy sin® g =2 Zn<VE sin Oy M+ £.e p 5

B 7500
Vg sin

gz,,(_E__eji> 3(:42)5

Beg, <2 fc cos B¢ B 7500 < 1 - o4 >e a3
* —= t o
- t .

VEk2 bo 148 sink29W sin® g+ Y5=0 1+Ee B5 5020

(53p)
wherein

£y = KeVgo (54)

It is shown in appendix E that the energy fraction may be given in the form

O 204
Mg = -0 158 [At O ¥t <;o4> } (55)

wherein ¥y 1is a function of ¢ (see appendix E and table I), ®¢ 1is a function
of B (see appendix E and table III), and, for given values of ot and K¢, Ay 1is
a function of both Vg and ¢ (see append:_x E and table V). The second term in
equation (55) will only be important when the ballistic parameter, B, is very

small.

1L



RESULTS

The analysis of the preceding section was used to compute by IBM 7090 the
heat-transfer characteristics of conical entry vehicles entering the Earth's
atmosphere. Since the analysis requires attached bow shock waves which limit
the maximum cone half-angle to about 550, results at larger angles are shown by
dotted curves in all the figures to follow. The calculations have been carried
out for a l-meter base radius. In one case the heat shield was assumed to be
composed of a low temperature ablator having the assumed characteristics of sub-
liming Teflon, and a high temperature ablator having the assumed characteristics
of vaporizing quartz. ZFor the Teflon the characteristics assumed are

{ = 2.2x10° m®/sec®
Ky = 12x107% sec®/m® (for a; = 0.26)
(56)
Ki = kx1078 sec®/m® (for ay = 0.09)
o, = 0g = 0.1
For the quartz the characteristics assumed are
¢ = 16x10° m®/sec® |
Ky = 1.5X107% sec®/m2 (for ap = 0.2L4) g
(57)
K = 0.5x107% sec®/m® (for o = 0.08)
GZ = O'-t = O,l J

The choices of a3, at, and { were based upon available literature (e.g.,

refs. 14 and 17). The choices for o, and g are based on the knowledge from
experiments with Teflon (ref. 18) that the asymptote is not zero (as predicted
by the usual theories). The asymptotic value is probably a function of molecular
welght and thermal conductivity at least, and is probably different for laminar
and turbulent flow. Values from experiment range from 0.05 to 0.2. The choice
of 0.1 is an arbitrary one.

Laminar Flow

The analysis for all laminar flow during vehicle descent (excepting free-
molecule flow at entry) is probsbly restricted to those cases for which the mex-
imum Reynolds number does not reach too large values. This condition is only
fulfilled for the larger values of the ballistic parameter (B of the order of
hundreds or thousands) and the results presented are so restricted. It is well
to treat, first, a single case to illustrate the typical effect of increasing
entry speed on the variation of the contribution of radiative and convective

15



heating to the total. Such an example is given in figure 3 for which the entry
body hag a cone half-angle of 30°, a ballistic parameter of 200, and a Teflon
head shield. At low entry speeds the convective transfer dominates and in this
range the total energy fraction falls with increase in entry speed because

(eq. (34)) the effectiveness of ablation to reduce the convective heat-transfer
rate is assumed to improve with increasing speed and because CHZO diminishes
(above 10 km/sec) with increasing speed. At the higher entry speeds, the radia-
tive heating rises rapidly with speed sco that the total energy fraction exhibits
a minimum. Note that the contribution of the nonequilibrium radiation to the
total energy fraction is very small and could well be ignored. This observation
applies generally to all cases of interest.

Consider next the more general case wherein the ballistic parameter is fixed
but we vary the cone half-angle over a wide range. The energy fractions as a
function of entry speed are then typically those shown in figure 4 for, again, a
ballistic parameter of 200 and a Teflon heat shield. The envelope values giving
the minimum energy fraction as a function of entry speed are shown by the dashed

curve.

If now we consider various values of B appropriate to laminar flow, we
can determine a series of envelope curves. ©Such envelopes are shown in fig-
ure 5(a) for a Teflon heat shield and in figure 5(b) for a vaporizing quartz
heat shield. It 1s seen that, at any entry speed, lowering the ballistic coeffi-
cient diminishes the energy fraction.

Turbulent Flow

The analysis for the turbulent flow case made no allowance for any laminar
flow which is, of course, unrealistic. However, it is expected that the errors
resulting from failure to allow for any laminar flow will be unimportant if the
maximim Reynolds number occurring during the flight trajectory is very high.
Thus we can presume that the "all turbulent" results will be realistic if the
ballistic parameter is small - say of the order of 20 or less - but will be in
error by unknown magnitudes for larger values., Accordingly, the results pre-
sented are restricted to the smaller ballistic parameters. As for the laminar
case it is well, first, to illustrate the typical effect of increasing entry
speed on the variations of the contribution of radiative and convective heating
to the total. Such an example is given in figure 6 for which the entry body has
a cone half-angle of 30°, a ballistic parameter of 20, and a Teflon heat shield.
The variation of the energy function with entry speed is seen to be similar to
that for the laminar flow case (fig. 3) and for the same reasons. Again, it
should be noted that the contribution of nonequilibrium radiation to the total
is very small and could well be ignored. As for the laminar case, this observa-
tion applies generally to all cases of interest.

Consider, next, the more general case wherein the ballistic parameter is
fixed but we vary the cone half-angle over a wide range. The energy fractions
as a function of entry speed are typically those shown in figure 7 for a
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ballistic parameter of 20 and a Teflon heat shield. As before, the envelope
values are given by the dashed curve.

If, now, we consider various values of B which may be appropriate to
turbulent flow, we can determine a series of envelope curves. Such envelopes
are shown in figure 8(a) for a Teflon heat shield and in figure 8(b) for a
vaporizing quartz heat shield. It is seen that at any entry speed, the energy
fraction is again diminished by lowering the ballistic coefficient.

DISCUSSION

In the following, the salient features of the results for the laminar and
turbulent flow cases are considered separately and then compared. Finally, the
important assumptions made in the analysis are reviewed to assess their adequacy.

Laminar Flow

In figures 5(a) and 5(b) it is clear that the least energy fraction is
obtained by making the ballistic parameter as small as possible. Since the maxi-
mum £light Reynolds number varies inversely with the ballistic parameter (see
appendix F) and since there is probably an upper limit to the Reynolds number
which one can allow and still enjoy laminar flow for the whole of the trajectory,
then it follows that there i1s some minimum ballistic parameter at any given entry
speed which can be permitted if the assumption of laminar flow over the whole
trajectory is to apply.

At lower supersonic speeds than we consider here, there i1s some support for
the contention that there is some limiting Reynolds nunber (denoted hereinafter
as Relim) above which one cannot expect to maintain laminar flow. It is

probable that in this high-speed region Reji, varies with free-stream enthalpy
and with the composition of the ablation material.®

We have assumed from experience with nonablating surfaces at lower speeds
that a meximum Reynolds number based on local surface flow conditions of 107 can
be reached before turbulence occurs., However, we will show the effect of increas-
ing or decreasing this limiting Reynolds number by presenting results for limit
Reynolds numbers of 2x107 and 0.5x107 as well. The analysis of appendix F gives
the relation between the cone half-angle, the ballistic parameter, and the entry
speed for an arbitrary limit Reynolds number. The optimum values of ballistic

SNot only is it probable that this limiting Reynolds number will be influ-
enced by the molecular weight of the ablated vapor but it is most likely to
depend upon the uniformity of the gblative process. For example, one expects a
composite ablator, such as a plastic impregnated fibrous material or a charring
ablator, by virtue of the Jjet-like injection of vapor from such a surface, to
behave differently than some ablator such as uniform Teflon which should be free
of such jetting.
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parameter, cone half-angle, and energy fraction as a function of entry speed were
found in the following way: For a seriles of entry speeds, Vg, base radii, ry,
ablation asymptotes, oy, and ablation constants, K;, energy fraction, n, was
plotted as a function of cone half-angle, O¢, for various values of the ballistic
parameter, B. (An example is shown by the solid curves in fig. 9.) On these same
plots the values of B and 6¢ corresponding to limit Reynolds numbers of 0.5x107,
107, and 2x107 were located and the corresponding curves of 7 as a function of
6c were constructed from which one can determine the optimum values of energy
fraction, nopt and the corresponding values of ballistic parameter, Bopt, and

cone angle, eco t (For the particular case given in figure 9, these are shown
by the dotted curves. The lowest values of 7 correspond to nopt') From the
total complex of plots, it was then determined that for the range of variables

0.5X107 < Reyjp S 2x107
0.2m3< Ty Sinm
< > (58)
0.05 S 0; S 0.2
-g sec® . -g sec?
2x1078 ——=— S K; £ 15x107° = )

the optimum could be expressed approximately by

04276

- o\ =0.281 0.310 -

Mopt = T1op’cORelim.Xlo ™) rbo'044(1001) (Kyx10%) (59)
- - -0.088 =0. 0.020 -0.02

%Copt = BCopt (Re11m10™") 1y, ™0 017 (100,) 7 950 (K x108) 701252 (60)

(61)

%)
Tb/opt

where the values of Tg,q, écopt’ and (E/rb)opt are the functions of entry speed
given in figure 10 and correspond by definition to values of n o¢ and
(B/rp)opt when o TreRe

B _7y=0:881 5.5 -0.033 5,0-038
<?%;Lpt(Relimxlo ) o (100,) (K,x10%)

N

Relim = 107
I‘b = l m
(62)
UZ = 0.1
K; = 107® sec®/m?
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A fact of considerable importance is that when the energy fraction is
optimum, the convective contribution is the principal part of the total, approxi-
mately 0.87 +0.02. Thus it is important to know the convective contributions
with an order of magnitude greater accuracy than the equilibrium radiation. The
nonequilibrium radiation is, as noted earlier, a trivial contribution to the
total. Other points to note about these optima are the following:

(1) The optimum energy fraction is insensitive to the vehicle size (rb) and.
can be approximately given as

o OZ 0.3 _ Olg 0.3 6

8o that other factors being equal the optimum energy fraction is unfavorably
affected by improvement in the heat of ablation as shown in figure 11, as would
be expected (egs. (34) and (36)).

The optimum mass loss ratio is given (eq. (13)) by the approximation

2 - Q.
<A_m> - VE . NoptVE < ) > SC'O'7 (61)
n Jopt opt o¢ 2 a,Reqin

The parameter

2-Reqs . N\O.3 1
<é@> < A 11m> Co.7 ~ opt VE2 (65)
m Jopt oy 2

is plotted in figure 12 as a function of Vg.

From the foregoing it is seen that although vaporizing quartz, a high-
temperature ablator, has a heat of ablation about eight times that for Teflon,
a low-temperature ablator, the mass loss for quartz is only about one-fourth
that for Teflon. These materials are compared in figure 13 wherein a limit
Reynolds number of 107 is assumed. Note that at the optimum conditions one can
keep the mass loss to the order of 10 percent or less for speeds well in excess
of escape speed.

(2) With reference to the optimm cone half-angle, we note that it is
essentially independent of all factors except the entry speed and that

8Copt = OCopt (66)

As seen in figure 10, then, the optimum conical bodies are not slender ones.
Even at an entry speed of 30 km/sec, the optimum cone half-angle is 25° of arc.
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(3) Concerning the optimum ballistic parameter we note that it varies almost
directly with the base radius, nearly inversely with the limiting Reynolds number,
and is essentially independent of other factors except entry speed. Thus

S - §> (Req ;,x1077) "% 6
ot . 7)
<rb>op " Ty opt lim (

The fact that B/rb appears as the baslc variable should not be surprising. As
noted earlier nonequilibrium radiation is a trivial contributor to the total
heating., Equilibrium radiation (eq. (24)) variation is

4
BO. 8

ne

N
Me ~ <;g (68)

while laminar convection (eg. (L5) or (46)) is directly determined by B/ry.

With reference to the <B/rb)opt’ there are some important connotations to be

made regarding trajectory angles. Since

2p A sin2 6
B = <_(2D_DO_A_> = Po Copt (69)
opt Bm sin 7 /opt Bm sin vy
and since
QCOpt = 9Copt (70)
while
.3
. b b
S e oL ()
3 tan Copt
where Py 1s the average density of the entry body, then for
Py = 1.225 kg/m3
(72)
B=—mt
7000
we get
sin” & ten &
B ~ Copt Copt
<;—> Z 5.2x10% e 12 (73)
b/ opt PpTy,~ sin ¥
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or, at optimum,

pbrb2 sin y = 5.2x10% [»-a~-__
(B/rb)opt

](Relimxlo'7)°'9 (74)

and the right side of this expression is a function only of the entry velocity
and Reynolds number limit. The relation is shown in figure 1lk. Let us now
review values of the product pbrb2 sin ¥y which are typical of entry vehicles.

For current manned vehicles the order of wvalues for density, base radius,
and trajectory angle is

b, = 250 kg/m®
r, = 1lm (75)
sin y 2 0.06
so that
ppTpe sin ¥ = 15 kg/m (76)

so that one expects that over the likely range of entry speeds permitted by entry
load considerations - say, less than 20 km/sec (see ref. 2) - there may not be
difficulty in maintaining laminar flow in the boundary layers. Of course, the
small values of y which are required from load considerations demand the use of
1ift in order to hold the vehicle in an earth curvature flight path. Half-cone
bodies (see, e.g., ref. 19) suggest themselves for such spplications. Moreover,
it should be noted that the analysis given herein for the aerodynamic heating of
conical bodies is predicated upon the assumption of constant 7y trajectories
and, hence, can only be considered a crude approximation for shallow-angle
entries.

For unmanned space probes the vehicle density will be about that for manned
vehicles but the size will generally be less (say, ry, = 0.5 m), and the vehicle
load consideration will usually permit steep descent (i.e., sin y up to unity).
Steep descent removes the necessity for employing 1lift during entry while freedom
in the choice of 7y may greatly ease the guidance problem prior to entry. How-
ever, 1f we intend to maintain laminar flow over such vehicles, we may be forced
to resort to flat trajectories except for low entry speeds, as seen by the
results shown on figure 15 which give the maximum entry angle as a function of
entry speed for typical vehicle guantities (p, = 250 kg/m3, r, = 0.5 m). As
vehicle size increases, the probable trend with time, the choice of entry angle
can become even more stringent. Thus, even for instrument probes, we may desire
flat trajectories at the higher speeds - but not because of load restrictions.

It must be remembered, however, that these conclusions are based upon the dubious
assumption that the maximim Reynolds number permitted for laminar flow is of the
order of 107. The need for high-speed laminar-flow research is clearly evident.
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Turbulent Flow

As for laminar flow if one is to minimize the energy fraction one must
employ the lowest ballistic parameter that can be permitted, particularly at the
higher speeds (see figs. 8(a) and 8(b)). However, it should be noted at the out-
set that one cannot indefinitely reduce the ballistic parameter and still recover
the vehicle intact. In the absence of auxiliary drag devices (drag brakes, para-
chutes, etc.) for terminal deceleration, the impaét speed (see eq. (8)) is

Vo = Vge 272 (77)

so that values of B upward of 10 must be set as a lower limit. With auxiliary
drag devices, this lower limit might perhaps be halved. Even at these very low
values of the ballistic parameter the turbulent energy fractions (see figs. 8(a)
and 8(b)) are not as low as can be attained with laminar flow for limit Reynolds
nunbers of the order of 107. For the turbulent case, as for the laminar, when
conditions are optimum, the convective heating is the dominant contribution to
the energy fraction. Again, the optimum cone half-angles are not small even at

very high speeds.

In comparing the optimum energy fractions for turbulent flow with laminar
flow it should be noted that the turbulent values are an order of magnitude
higher (the ordinates of figs. 8(a) and 8(b) are expressed in percent while those
of figs. 5(a) and 5(b) are tenths of percent). This disparity is forcefully
demonstrated in figure 16 wherein for three entry speeds, optimum energy fraction
is plotted as a function of the ballistic parameter. (Note the lower ends of the
laminar curves represent a Reynolds number limit of 107 and that the dotted
curves are arbiltrary fairings to indicate how the turbulent and laminar might
join.) It is clear that laminar flow is to be sought even if the limit Reynolds
numbers are low. Figure 17 shows the corresponding variations of optimum cone
half -angles with entry speed and ballistic parameter and again emphasizes that
the optimum angle is only, in essence, dependent on velocity.

Review of Assumptions

In the analytical development many assumptions were made. While a number of
these are clearly valid approximations there are many that should be reviewed to
ascertain, in retrospect, their adequacy. Discussion of them is given in the
following:

(1) The assumption that flight path angle is constant, which was made for
the purpose of simplifying the analysis, is generally admissible when the entry
trajectory is steep (see ref. 12). However, for manned vehicles and for high-
speed probes which may enjoy laminar flow the assumption is not strictly admis-
sible so that this restriction must be borne in mind in interpreting the results
which have been given. In any event the restriction does not invalidate the
conclusions when considered in a comparative sense.
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(2) The assumption that the drag coefficient is constant demands that the
body not be slender and that no shape change occur during entry. We have already
seen that optimum bodiles are, in fact, not slender so that from tris aspect the
assumption is wvalid. However, the process of ablation will tend to promote a
shape change which, as will be shown later, can and mist be minimized so that the
assumption is therefore valid with this restriction.

(3) The assumption that ablation is either by sublimation or vaporization of
the surface is generally an acceptable one for low-temperature ablators but can
be seriously in error for high-temperature ablators. Quartz, for example, would
experience considerable ablation in the ligquid state unless the heat-transfer
rates were very high and of short total duration, as during steep trajectories.
Thus the results given for quartz might be appropriate for the turbulent flow
cases discussed but surely underestimate energy fraction and m.ss loss for the
laminar ones (see ref. 1L for actual performance of quartz at low heat rates).
Finally, it should be noted that for very high heat-transfer rates, there is con-
siderable danger that ablation in the solid state may occur as a result of struc-
tural failure due to excessive thermal stress within the ablator. Stony meteor-
oids commonly experience structural failure during atmosphere entry (see ref. 20
and also ref. 2L for a particularly spectacular example) which may result in part
or in whole from excessive thermal stress. Many of the ablative heat shields
which have demonstrated excellent performance to date may not fare too well under
the more severe service we have considered here.

(4) The assumption is made that the mass lost by ablation during entry is
small compared to the entry mass. The results show (fig. 13) that Am/m smaller
than about 0.1 is obtained over a considerable range of entry speeds. For this
range the assumption is therefore wvalid.

(5) The assumption that no cross coupling (ref. 22) of radiative and convec-
tive heat transfer occurs will certainly be an acceptable one for the results
which have been given for near-optimum cases since, as has been shown, in these
cases convective heating dominates. ©Since the energy loss from the shock layer
by radiation is small it cannot have an important effect on the convection. At
conditions away from optimum, coupling may become more important, but such con-
diticns are not of interest for the present study.

(6) The assumptions that energy depletion due to radiation is trivial and
that no reabsorption of radiation occurs within the gas cap are generally accept-
able for the more interesting case considered (i.e., for near-optimum bodies)
since the energy fractions are then small,

(7) The assumption that some limiting Reynolds number exists below which one
expects laminar flow is open to serious doubt, as has been pointed out earlier,
This assumption is based on the experiences obtained from tests at far lower
speeds than are considered in this paper. Clearly, some important research can
and must be done on the stability of laminar flows at high speeds. A similar
comment applies to the assumed formulation (egs. (34) and (52)) for the ratio of
convective transfer in the presence of ablation to that in its absence.
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(8) Finally, the assumption that no shape change occurs during entry
requires considerable review, for it is in contradiction to the fact that the
heat-transfer rate is not uniform over a conical surface during those portions
of the trajectory where heating is very important (i.e., in the continuum flow
regime). In continuum flow, particularly for the laminar case, the convective
heat-transfer rate varies from large values at the apex of a cone to small values
at the skirt. Thus the cone tends to be ablated to a round-nosed near-cone with
increased cone half-angle. If the entry speed is high, the rounded apex, pro-
moted by the convective heating variation along the cone, becomes flattened by
the radiative heating contribution at the lower altitudes. The flattened face
now ablates rapidly because of the near-normal shock conditions at the bow,
and the mass loss, 1f the entry speed is high, will be much greater for the
ablated shape than it would have been if shape change had been prevented. Thus
such adverse changes in body shape must be prevented if the advantages of conical
bodies are to be realized. This problem is the subject of the following section.

The Problem of Shape Change

To illustrate how the shape of an initially conical body changes with time
as the result of variations in heat-transfer rate along the surface, a Teflon
cone was subjected to laminar convective heating in an arc-jet flow of moderate
enthalpy. (The arc-jet flow characteristics and description of the models used
in these experiments are given in appendix G.) Photographs of the body ini-
tially and at 18 seconds after the establishment of air flow are shown in fig-
ure 18. The progression of shape change is shown in figure 19. Flattening does
not occur in this experiment because the enthalpy of the stream is not high
enough for radiative heating to be significant (the stream enthalpy corresponds
to a flight velocity less than 3 km/sec).

If the entry speed of a vehicle is only slightly greater than parabolic
speed - say 12 km/sec-the penalty for shape changes similar to the initial
changes shown in figure 19 will, at the worst, be small because, as rounding of
the apex occurs in an actual flight, the speed diminishes enough that normal
shock radiative heating, because of its great sensitivity to speed, will not
cause excessive additional ablation.

It is anticipated that such will not be the case 1f the entry speed is some-
what higher - say 14 km/sec. In this case one might profitably employ a near-
conical body having a cusped apex, such as shown in figure 20(a). This shape was
formed by adding to the original cone in the axial direction an amount of Teflon
very nearly proportional to the inverse square root of the local radius of the
cone. Figure 20 corresponds to the c¢ = 0.1 case (see appendix G for shape equa-
tion). When this cusped shape was subjected to the heating of the arc jet, the
changes in shape with time were those shown by the photographs and the measured
ordinates of figures 20 and 21, respectively. One other cusped shape correspond-
ing to ¢ = 0.3 was also tested. The corresponding changes in shape with time
are shown by the photographs and measured ordinates of figures 22 and 23. Com-
paring the ablation of the cusped bodies with the ablation of the cone, one sees
that at any given time after the commencement of heating, the nose radius is less
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the greater the cusp (i.e., the larger the value of ¢). Thus flight vehicles
having such cusped shape might be used for somewhat higher entry speeds than
would be tolerable with a cone.

The stratagem of cusping cannot be expected to be a satisfactory solution at
entry speeds well in excess of earth parabolic speed. It was reasoned that for
such cases one must employ an auxiliary coolant at the apex to prevent drastic
shape changes. For example, one might cool the cone by transpiration of a gas
through porous walls at the apex (see, e.g., refs. 23 through 25) or by feeding,
at an appropriate rate, a fluid or a solid ablator through a hole at the apex.

To investigate the performance of such an apex cooling system, the Teflon models
shown in figures 24, 25, and 26 were constructed and tested in the arc-jet wind
tunnel (see appendix G). The apexes of these models have holes of three differ-
ent sizes through which Teflon rods of the same diameter as the holes could be
fed during the tests. Time-sequence photographs of the models during the tests
are shown in figures 27, 29, and 31. The model dimension changes with time and
the feed rates for the rods are given in figures 28, 30, and 32. The remarkable
fact to note is that this scheme permits the ablation of the conical body to
occur with but small change in shape of the cone surface. These tests indicate
that such schemes may be very attractive for application to vehicles at high
entry speeds. An interesting fact of these particular tests is that the mass of
rod fed per unit time was essentially independent of rod diameter. This suggests
that only small diameter rods need be used so that the mass penalty due to rod
ablation resulting from normal shock radiation at the face of the rod, which
varies roughly as the cube of the rod diameter, can be kept small. Of course, it
mist be noted that the arc-jet test conditions are considerably different from
those which would occur in flight and could, therefore, not be representative of
high entry velocities. The results are nevertheless encouraging that some
solution to the shape-change problem can be effected.

CONCLUDING REMARKS

The analyses employed in this study are clearly of an approximate nature so
that the results should be regarded as comparative rather than absolute. The
results do point up future problems of importance for high-speed entries. Some
salient factors to note are the following: Laminar boundary-layer flows on
vehicles result in an order of magnitude less mass loss than turbulent flows at
reasonable reentry Reynolds numbers. Much research on the stability of laminar
flows at hyperbolic entry speeds must be done in this regard. For optimum coni-
cal vehicles, convective heat transfer is an order of magnitude more important
than radiative heat transfer, so that to properly assess heating problems at
high entry speeds, one must determine convective heating with greater accuracy
than one need determine the radiative heating. Nonequilibrium radiative heating
is a much less important factor than equilibrium radiative heating.

In addition, if the advantages indicated for conical, or near-conical,

vehicles for atmosphere entry at the very high speeds considered are to be
realized, changes in heat shield shape due to ablation must be controlled in
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some manner to prevent the serious nose blunting which would normally occur
during entry. This requirement will demand ingenuity in design.

Finally, for some entry trajectories of interest (e.g., steep entries with
turbulent boundary-layer flow) heating rates may greatly exceed those we have
been accustomed to in the past. Accordingly there is considerable danger that
many of the ablative materials usually considered to be attractive may fail
structurally because of excessive thermal stress and so be useless for such

severe applications.

Ames Research Center
National Aeronautics and Space Administration

Moffett Field, Calif., July 12, 1963
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APPENDIX A

SYMBOLS
A area; without subscript, base area of cone
a area of shock cone to base of cone
B ballistic parameter
bo,b1i,b2,bs constants
C,c constants
Cp drag coefficient
Cp friction ccefficient
CH over-all heat-transfer ccefficient
Cp specific heat at constant pressure
D drag
da diameter of ablation rod
B kinetic energy
E time rate of radiation
BEi exponential integral
e Napierian logarithm base
F total frictional force
G1,Go,Gs,G4 constants
g ratio of total enthalpy, br

hre

H aerodynamic heat input in kinetic energy units
h enthalpy
K ablative coolant parameter

o

thermal conductivity



A model length

M mach nunber

m mass

Pr Prandtl number

P pressure

q heating rate per unit surface area

R gas constant

Re Reynolds number

r radius

St Stanton number

T temperature

t time

U velocity normal to shock

Ui,e a particular velocity, 13,700 m/sec

u velocity in boundary layer

v vehicle velocity

v volume of shock layer

X distance along axis of revolution measured forward of body base
x distance along the cone surface from apex
Y altitude

y distance perpendicular to cone surface

Ze equilibrium heat-transfer function of Vg sin 6y
Z compressibility factor

o function of ablation material

B inverse of scale height

r gamma function
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4 flight-path angle measured from local horizontal

Am total ablated mass
AN difference between bow shock angle and cone angle
o} increment
4 energy required to ablate a unit mass
N energy fraction
fc half-angle of cone
Oy shock angle
A function of Vg, 6p, &, and 7
A nondimensional height within a boundary layer
V! absolute viscosity
v kinematic viscosity
£ eblation parameter, KVg®
o) air density at any altitude Y
o) air density ratio, é%
o asymptotic value of Eﬁi

CHO
0] function of B
X the product of Bp
¥ functions of Og
Q functions of ¢
w an arbitrary variable

Powers
i arbitrary
Jisd2 velocity dependence power in laminar convection
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kl;kE

cl

€1

€2

fm

11

l2

lim

opt

sp

30

velocity dependence power in turbulent convection
general exponential in power series

density dependence power in equilibrium radiation
velocity dependence power in equilibrium radiation
velocity dependence power in nonequilibrium radiation

at reference conditions
Subscripts

body (or body base as in 1)

collision limit

at entrance into atmosphere

equilibrium radiation

equilibrium radiation at U < 13,700 m/sec
equilibrium radiation at U > 13,700 m/sec
free molecule

incompressible

laminar convection

laminar convection in absence of ablation
laminar convection for V < 13,000 m/sec
laminar convection for V > 26,000 m/sec
limit

maximim

nonequilibrium radiation

sea level

optimum

stagnation point



turbulent convection

turbulent convection in absence of gblation
turbulent convection for V sin 6y < 7,500 m/sec
turbulent convection for V sin Oy > 7,500 m/sec
total

at cone wall

at edge of boundary layer

conditions behind the shock

free stream
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APPENDIX B

EQUILIBRTUM RADTATIVE HEATING

Dependence on Velocity and Air Density

It is by no means obvious that an equation of the form of equation (16) can
be used to represent the dependence on density and velocity of the radiative out-
put per unit volume of the gas behind a normal shock wave. In particular, 1f the
exponents ¢ and p are subject to large and continuous variations and are them-
selves functions of U and 5, the usefulness of this representation would be
serilously limited. However, it has been previously shown (e.g., in ref. 10) that
plotting (1/51'7)(dEe/dv) logarithmically against velocity results in a reduction
of available experimental and theoretical data to a fairly narrow band whose
center is nearly a straight line for wvelocities from 5 to 13 km/sec. The theo-
retical lines in such a presentation show a definite swerving behavior in this
speed range, indicative of local variations in the value of ¢ (see fig. T,
ref. 10), but never deviate too Tar from a straight line.

Since we are concerned in this paper with a broader velocity range than that
considered in reference 10, we plotted the collected theoretical data applicable
to this broader speed range in figure 33. Here the logio(dfe/dv) is plotted
against 1log;0U for several altitudes, thus deferring for the moment the con-
sideration of the effect of altitude. The symbols represent the theoretical data
and were based on the results of references 5, 26, and 27. It is seen that three
distinct regions of velocity dependence are suggested by the data, each of which
can be fitted by a straight line segment. The low velocity range extends from
about 4 to 8 km/sec; the intermediate range is from 8 to 13.7 km/sec; and the
high range extends to at least 30 km/sec. Thus, the two lower speed ranges cor-
respond to the complete velocity range of reference 10, and the two slopes repre-
sent, to an acceptable degree, the principal swerve in the theoretical curves
shown in that reference. 1In the integrations of total heat input for the present
paper, the existence of a different velocity dependence in the lowest speed range
was ignored because of the comparatively small values of radiative heating in
this speed range; the middle region was assumed to extend to zero velocity.

In fairing the lines on figure 33, certain restrictions were imposed:
(1) The line segments in each velocity range were required to have the same slope
at all altitudes. (2) The intersections of the lines for the upper two velocity
ranges were required to occur at a constant velocity, independent of altitude.
These restrictions were made so as to make ¢ independent of o and so that a
single speed, U; o = 13,700 m/sec, would be the transition speed from one set of
curves to the other at all altitudes. These restrictions did not seriously
impair the fit of the lines to the data, the worst error being a factor of 2 and
occurring at high altitude (and therefore at comparatively low radiative
intensity).

While the theory for the lower-two speed regions is well supported by the

data of reference 10, the radiative intensities in the highest speed region are
entirely based on the theory of reference 27 for which there is no experimental
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verification. This theory treats air at temperatures extending above 200,000O K,
well beyond the highest temperatures (SO,OOOO K) considered in the present paper.
Above lOO,OOOO K, the theory predicts that the radiative energy output is essen-
tially independent of temperature. Between 20,000° K and 100,000° K, the temper-
ature dependence may be represented by 735, At still lower temperatures,
according to data given in references 5 and 26, the dependence is approximated by
T1C-7. Thus the slope change in figure 33 at Ui, = 13,700 m/sec is primarily a
result of the change of temperature exponent which is predicted to change further
and go to zero at still higher speeds and temperatures. Although these predic-
tiong should perhaps be viewed with caution pending experimental verification, it
is noted that analysis of several meteor entries (ref. 28) indicated that the
magnitude of the radiation predicted by the theory is perhaps correct.

The altitude or density dependence may now be considered. The radiative
intensity at a wvelocity of 13,700 m/sec is plotted on logarithmic coordinates in
figure 34 for the four altitudes of figure 33 as a function of the density ratio
5. A straight line is a remarkably good fit to these data, which, together with
the previous figure, indicates the appropriateness of the form of equation (16).
The slope of the line gives p = 1.80. The fact that this plot is made for the
Juncture velocity of the two upper speed regions means that this slope is wvalid
for velocities both above and below this velocity. Af other velocities, lines
parallel to that shown are obtained. (If it had not been possible to find a
comuon velocity at all altitudes for the intersection of the lines of the two
families, this would have implied that ©p is different in the two velocity
regions.) The evaluation of the constants Ceqs Ceny P, 4., and g, from fig-
ures 33 and 34 is straightforward and gives the values recorded in the text as
equation (17).

Calculation of Shock-Wave Angles

For purposes of calculating the volume of gas radiating to the body and
defining local flow properties at the boundary-layer edge for the convective
heating estimates, the following approximate analysis of hypervelocity flow over
pointed cones was made. The gas was assumed to have the properties of real air
at equilibrium. The shock layer was assumed to be of uniform density and veloc-
ity, consistent with the knowledge that the entropy is uniform and the shock
layer is very thin. Under these assumptions, continuity of flow requires that

2 2
oV <1 . ten AQ> cos 6 = 2 ten A9 <tan A9> (B1)
p2V2 tan 6¢

where p, and Vo are the density and total velocity behind the shock wave. This
is solved for tan A6 to obtain

tan NS - 1 S 1 (B2)

tan 6¢ 1 - Dg cos B¢
pPaVa
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Given the cone angle 6x and the free-stream density and velocity, p and V,
equation (B2) is solved iteratively with the aid of real gas shock-wave tables

or charts such as those given in reference 29. A first-approximation estimate

of the standoff angle A8 permits the downstream flow properties to be obtained
so that pV/p2V2 can be evaluated. Inserted 1in equation (BE), this leads to a
new value of A9, and the iteration is continued to convergence (usually one more

cycle).

Standoff angles computed by this technique are shown in figure 35 for veloc-
ities of 6 to 22 km/sec, cone half-angles of 150, 300, and 55°, and an altitude
of 50 km. A result of these computations was that the velocity ratio V2/V was
given almost exactly by cos 6y and within 9 percent by cos 6g, so that equa-
tion (B2) may be approximated by

tan AO il 1 (83)

tan 6¢ 1.0
P
2

or, for p/p, K1, 28 » (1/2)(tan 6¢)(p/p,) radians, a result which is analogous
to that obtained in studies of shock-wave standoff distance for blunt bodies

(see, e.g., ref. 30).

Since the standoff angle is a function of the density ratio across the bow
wave, it follows that A6 will vary in a complicated fashion with free-stream
velocity and altitude. The most general way to give the results of the present
calculations is to show the dependence on density ratio, as is done in figure 35,
where the circular points represent the values obtained at the conditions cited
in the previous paragraph. For comparison, two points obtained by the exact
theory of Taylor and Maccoll (see ref. 31) are shown for an ideal gas with a
ratio of specific heats equal to 1.4 at infinite Mach number (square symbols).
Since, at the highest speeds considered here, the density ratio at the bow wave
tends to values between 15 and 18, a working curve was drawn showing approximate
values of A9 as a function of cone angle for free-stream velocities greater
than 20 km/sec, figure 36. For simplicity, this curve was assumed to be univer-
sally applicable in the equilibrium radiative heating integrations.

Also shown in figure 36 is an interpolated curve from the present calcula-
tions for a lower speed, 9.2 km/sec, and an altitude of 50 km. This curve is
compared with points taken from reference 32 for speeds near 9.2 km/sec and a
free-stream pressure of 0.00l p, which approximates the pressure at 50 km
altitude. The method of Taylor and Maccoll for real air at equilibrium was used
in the calculations of this reference. While agreement 1s by nc means exact, it
is within 20 percent at the worst point. The reasons for the disagreement are

not clear.

A final comment on the behavior of the curves of figure 36 in the vicinity
of 6g = 0 is in order. Although the lower curve seems to be going into the
origin, we know that at 6g = 0, A8 = sin"1(1/M), and the wave angle can never be
less than the Mach angle (i.e., 6¢ + A6 > sin~1(1/M)). Since the Mach angles at
the speeds considered range from a few tenths of a degree to 1° or 20, this
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limitation need not be considered until 6p < 20, TFor cone angles smaller than
20 (an academic case), the curves must turn up and terminate at A8 = sin”2(1/M).

Evaluation of Equilibrium Energy Fraction

-(B/2 -1)p
In the integral of equation (22a) the value of e ( / )(ql )8 when § is
of the order of unity or larger is so small that with negligible error we may
write for p greater than zero

ap = — (@ 5 (1)
(o3

wherein [I'(p) is the familiar gamma function (see, e.g., ref. 33). Similarly,
we may write

fl e—(B/2)(Cll—l)55p-1 a5 = f°° e_(B/E)(ql_l)ﬁﬁp_l
— o]

=0

1 -(B/2)(q,-1)5 p- . Pi,2 -(B/2)(a;-1)5 p-
f . 1 P a5 = I'(p) p_f’e / 1 £ a5 (B5)
F=61 o 5P <ql - 1> o
2
wherein
Vm sin 6
- 2 B W
1,2

The right-hand integral of equation (B5) may be evaluated by expanding the
exponential in a power series. Thus,

1 e 91 (caw)® 1 N (ccwy)”
JF el aw = d[‘ }: =C9) Wl odw = w, M j? CWy (B7)
o A n. /s n'(n + 1 + 1)
n=0 n=0

With these formulations, then, the equilibrium energy fraction can be put in
the form of equation (24)

_ TpleZe
e = Bo.s

if we put
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sin® oy(tan® 6y - tan® 6g) (58)
sin® 6g tan® 6¢

q4,-8

(Vg sin 6y)

2 c
e €1 D
6 <q1 - #)
2

r(p) 5 Vg sin 6y <Uip (B9a)

n

and
Vo sin 6, 1"
E W
(vpsn o) ™ gm0~ B
Ze e r'(p) -[(ql- 1)in —— Z ’
6 (% - §>p Ui,2 = n!(p + n)
2
Ve sin n
. q.-3 . D [0 |:_(q2 - l)Zn u:]
(Vg sin 6y) ™2 Vg sin 6y Ui,2
+ Cep [(qe - )i ———— Z . 5
6 (% - l>p s ni(p +n)

Vg sin 6y > Uy,2  (B9b)

From the relations of equations (17) and (23), then,

Vo sin g\12+45 V. sin @ ~
Ze = 0.0701 <—E———W> ; ;E——4—E <1.37 54 (B10e)
10% 10
V. sin 6.\12.45 2 3
Zg = 0.0701 <-E———W> [l-l.O?hxll'B <11 .S TP S N >]
104 .8 2.8 21(3.8) 3:(k.8)

V. sin 6. \2+05 2 3
+ 19. )'"5 <——E———4—E> Xgl' 8 <l—]'_— - —g + X2 - X2 + . . .> H
10 .8 2.8 21(3.8) 31(4.8) o

Vg sin oy

> 1.37 VEBlOb)
10*
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wherein

X2

I

V., sin QW
4.05 n <—>
3,700

V.

1

sin 6

E_Vl>

14.45 1n <

13,700

(B11)

37



APPENDIX C
NONEQUILIBRIUM RADIATIVE HEATING

The treatment of nonequilibrium radiative heating in this paper is based on
the conceptual model of the nonequilibrium region described in references 34
and 10, and on the experimental observations of nonequilibrium air radiation of
reference 10. Although the research on nonequilibrium air radiation is at the
present writing still very new, it appears to be approaching a satisfactory defi-
nition of the radiative intensities for speeds normal to the shock wave up to
13,000 meters/sec. For the higher speeds treated in the present paper, it was
necessary to extrapolate.

The data of reference 10 are reproduced in figure 37 on logarithmic
coordinates as a function of velocity normal to the shock wave. They define a
line with a slope of approximately L4, and are represented by the equation

am
?{9 = 1.15x10711 y#*-08 (c1)
a

The line defined by equation (25a) of the text,

af
?i?': 0.7kx10722 U7 (c2)

was adopted on the basis of data available earlier, and is plotted for compari-
son. For a speed of 11,000 meters/sec, it is seen to indicate about four times
the radiative intensity given by the latest data. In view of the finding of the
analysis (see text) that the nonequilibrium radiation makes a relatively small
contribution to the total heating, no revision to the analysis on the basis of
equation (C1) was made. The conservatism implied by use of equation (C2) at the
higher speeds may be considered desirable in view of the present velocity limit

of the experiments.

In spite of the density independence of eguations (c1) and (C2), various
effects are known to contribute to a cut-off of the noneguilibrium radiation at
very high altitudes, as discussed in references 34 and 10. The contributing
effects include the flow energy limitation, truncation of the noneguilibrium
region by the presence of the body, cooling of the shock layer by a thick viscous
boundary layer, and collision limiting. For simplicity, these effects are lumped
in the present analysis into a single effect, referred to as collision limiting,
and assumed to begin reducing the radiation at altitudes Jjust above 50 km. This
choice appears reasonable based on information given in the references cited

above.
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Evaluation of Nonequilibrium FEnergy Fraction

The integrals of equation (30) are

r (e, Laen] a0 T (o

5 2 2
ch

wherein values of the exponential integral Ei(-w) may be obtained from published
tables (e.g., ref. 33), and

& = e - e ~ 1l ~-e (ch)

since 5, ~is very small. The constant given by equations (26) and (31) can be

used to put n, in the form of equation (32)

4
L = Fnf GE>
n n=n 04

if we define

sin® oW tan® Oy
¥, = (c5)
sin® e tan® O¢

and

-sBX1o'3}

1 -e
3BX10™3

o, = 3BX1077 [Ei(-3B) - BEi(-3Bx1073) + (cé)
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APPENDIX D

LAMINAR CONVECTIVE HEATING

Theoretical Method

The laminar convective heat-transfer coefficients for zero ablation, CHZ B
o

were calculated by the method of XKemp, Rose, and Detra (ref. 35) modified as
described in this appendix. Numerical examples for cone half-angles of 15 R 300
and 55° at velocities of 6, 10, 14, 18, 22 and 26 km/sec and at altitudes of 20,
35, 50, and 75 km were then calculated With the set of theoretical data so
obtained, the form of a suitable empirical equation to represent these data was
determined (eq. (33)) and the empirical constants were evaluated.

Reference 35 (eq. (21)) gives the approximate relation on which the heat-
transfer estimates were based which for cones may be writtent

J2 g 0,438

A Pk :
Vo 0.6u8 €> (D1)
L - g, Oyte/sp

where g = hT/hTe, hr = h + (u2/2), h is static enthalpy, BNy = (3g/MN)y, N is

a transformed coordinate normal to the body surface, € and w indicate conditions
at the boundary-layer edge and at the wall, respectively, and p, u, and p have
thelr usual boundary-layer significance. An approximation suggested in this ref-
erence is the evaluation of the ratio peue/pwpw at the stagnation point for
subsequent application to all points on the surface. This is said to introduce
errors no larger than a few percent compared to more exact procedures in several
instances where they have been compared. Equation (D1) also assumes that the
Lewis number is 1.0.

Since, for a Lewis number of 1.0,

ky /dn
9=\ (p2)
Py \OV/w
(where ky and c are the gas conductivity and specific heat at the wall, and

g 1is the local heat-transfer rate per unit area), and the relation between 7y
and A 1is as given in reference 35, equation (Dl) may be written for cones as

0.438
- N2 o 648 /que cp )(hm + hw> p€p€> (D3)
W

1To avoid confllct w1th the symbols used in thls report, certaln of the
symbols in the equations to follow have been changed from the original form.
The quantities H and n of reference 35 are denoted herein as hy and A.
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Integrated over the surface of the cone to obtain dH/dt and divided by
(1/2)pV®A  to obtain CH;,» this becomes

c - _2_0.648 «/m <kw> [hoo + (v3/2) - hw} <p€u€ 0.438 o)
HZO @ ° pVI‘-b Cp. V2 /2 DWHW o

where x, and T, are the slant length and base radius of the cone and

h, + (VE/E) - by

1
V2 /2

for high wvelocities,

Equation (DL4) may be put in terms of the free-stream Reynolds number er/u

to obtain
o, = (RAB)O.6I8 [Pty T <p€“e> ' (05)
lo Pry [oVry, /0 e Pyt

where Pr.. 1is the Prandtl number at the wall, and ue/V = cos Hp has been used
(see appendix B). Properties without subscripts are evaluated in the free stream
ahead of the bow shock wave.

Discussion

In the application of equation (DL4), ur was taken to be the value for a
sharp cone, corresponding to an assumption of small tip blunting. In cases where
tip blunting occurs to an appreciasble extent, uc becomes lower than it would be
for a sharp tip, while nothing else in equation (D4) is affected, so that the
convective heat transfer is predicted to diminish. In this respect, the results
of the present analysis are conservatively high.

The accuracy of the heating estimates obtained on the basis of equation (Dl)
cannot be assessed at the present time, but they could be in appreciable error.
It is noted that equation (D1) is obtained by modifying a stagnation point solu-
tion on the basis of an empirical cbservation. Therefore, if it is applied to
conditions outside the range of its evaluation, as it is here, it may be inaccu-
rate. Thus, values of (peue/pwuw)sp as low as 0.0035 were encountered in the

calculations, while reference 35 recommends equation (D1) for the range of this
parameter from O0.15 to 0.55. Similarly, values of u€2/hT€ = 2 cos?® 8¢ up to
1.86 were treated, where reference 35 discusses values up to 1.50. Because of
the uncertainties present, a new theoretical study of real air laminar convection

L1



to cones has been started at Ames Research Center, and initial results indicate
that the present estimates are probably inaccurate at worst by a factor of 2.

Computation of Results, and Fitting the Empirical Equation

The gas properties required in equation (D5) for stagnation temperatures up
to 47,000° K were taken from references 36, 37, and 38. Reference 36 gives the
thermodynamic properties of air for temperatures up to 100,000° XK, and refer-
ence 37 gives the viscosity and other properties up to 15,0000 K. Reference 38
is an extension of reference 37 to 3O,OOOO X for pure nitrogen, and shows that
the transport properties do not differ greatly between air and pure nitrogen in
the temperature range up to lS,OOOO K. The nitrogen data were therefore used at
the higher temperatures and extrapolated where necessary. The extrapolation,
which certainly should not be considered reliable to more than one significant
figure, was performed on a logarithmic plot of viscosity versus enthalpy. A
family of curves was plotted with pressure as parameter, so that the shapes of
all the curves could be used to guide the extrapolation.

A wall temperature of 3,OOOo X, representative of the temperatures attained
by carbon, quartz, and the charring ablators, was selected for evaluation of the
air properties at the wall. However, it can be shown from equation (D5) that
CHZ is not a sensitive function of the wall temperature.

o]

0.438 . R
The factor (pepe/pwuw)s in equation (D5) is independent of cone angle,

and is shown plotted in figure 38 as a function of velocity for four altitudes
from 20 km to 75 km. It decreases continuously with increasing velocity. The
altitude dependence is small at low velocities, but becomes appreciable at the
higher velocities. Since an empirical expression in which the density dependence
is a function of the velocity was undesirably complex for our purposes, and in
view of the convenience of exponential forms, a single curve independent of the
density, shown in figure 38, was taken to represent (pe“e/pw“w)g'ésg' The equa-
tion of this line is P

Ok 0.438
<€ €> = (3.hx108)v-5/3 (D6)
pW'I‘J'W sp

It can be seen from the figure that this expression does not apply at speeds much
below 10 km/sec, and is very approximate throughout the range.

The dependence of heat-transfer coefficient on cone angle, according to

equation (D5), is entirely contained in the radical, ,[(p,/p)(i;/1)cot 6c. The
factor pw/p may be expressed

e P 2
oW T ((sin2 6c) g l] T (D7)
P P oz Ty RT Zy Ty

L2



which for large values of V sin 6¢ = U reduces to

Py V& sin? 6g

w7 r (p8)
& Rz Ty
and the radical becomes
P Hyr/ L
_W & cot QC =V —W/— sin 290 (D9)
oM 2Rz Ty

where h/(uw/u)/QszTw is nearly independent of cone angle, speed, and altitude
and is equal to approximately 0.0016 sec/m for T, = 3OOOO K.

Substitution of equations (D6) and (D9) into (D5), along with values for the
viscosity in the free stream, the wall Prandtl number, and p,, results in the
final expression for Cp, given in the text as equations (33) and (38),

o

19.8 /sin 260

CH, = (D10)

o Vl'l?,\/gf—‘b—

Values of CHZ given by equation (D5) are plotted against velocity in
0

figures 39 and LO as points, and are treated as data to be Titted. They show the
heat-transfer coefficient to be nearly independent of velocity at the lower
velocities, and then to diminish with further increases in velocity. The curves
described by equation (D10) disagree with these data at the low velocities, but
agree approximately at the higher velocities. Disagreement (in opposite direc-
tions) also occurs at the highest and lowest altitudes considered (fig. 40). All
of these trends can be foreseen from figure 38. At speeds below 13 km/sec, a
reasonable fit is obtained by taking CHZO independent of velocity, J = 0 in

equation (33). The level lines shown in this region correspond to the low-speed
coefficients of equation (33), given as equation (37). It may be said that these
fitted equations describe the calculated data adequately, in view of present
uncertainties in the method of calculation.

In applying these equations, a smooth transition was made between the low-
speed regime with J = O and the high-speed regime with j = 1.17. The transi-
tion curve, described in the text, was a four term series in powers of V, with
constants selected to match the levels and slopes of the two heating equations
at 13,000 m/sec and 26,000 m/sec, respectively.
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Evaluation of Laminar-Convective Energy Fraction

To solve equation (U44) we make the following assumptions:

(a) Because when 7 2 1, the exponential

e ~BP (D11)

is very nearly zero for vehicles of interest to this paper, it is satisfactory to
substitute unity for

L+ g,e7P (D12)

(b) Because in the range 0 < § < 5fm for wvehicles of interest to this paper

V 2 Vg, then for the denominator of the first integral the expression 1 + gze'Bp
may be replaced with 1 + £5.

With these simplifications equation (L4) becomes, if we let

X = Bp (D13)

~(1-2
VB cy(1 - oy) f°° o (12X oy
ovgd JTp sin® 6y Jo (L + te”) WX

Nﬁ; c,0 o
. 197 f
o]

QVEJ,/rb sin® 6g

ny =

J
e'( l'é—)X

ax JE.CZ me e
B

NE3 QVEJ,/rb sin® 6g
Bﬁfm

Bp J
1 -0, NB ¢ pfme‘(l'é")xdx 1 X
(——=+ 0oy e - @, = e ™
l+§,Z o & 2 o

2vy? (T sin® og

(D1k)

The first and third integrals can be evaluated numerically; the second is a
gamma function; the fourth can be evaluated as a series after expanding the expo-
nential as a series; and, although the fifth can be integrated directly, it is
preferable to express it in series form also. The solution may be written as
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L allra) m ., 6% =@
| R

Z 0
2vg? sin2 og N ovg? sin2 og
g~ Bo ]
<l . c> ¢y J/Bben K > fm
/ oy - g / :
EVE 51n2 o¢ + &y L 2vgY sin® 6g N b n—o nt < + ﬁ>

(B, )"
1 fm
3 ), e (p15)
1
wherein
© ‘(l'éj—)x
9, = Jf e 7 & (D16)
o (L + Eze-x)*fi
and
5] '(l"——
2y = \jp e X (DL7)
B

Since (see ref. 33) I'(3/2) = 0.8862, then equation (D15) may be written

¢y F[ oy
M, = : (1L - 0;)07 + L7728 ——r—— - @zJ
Y ovgd sin® g N b Ji- (3/2)

3 >< ) @)
2 sin2 6¢ L+ & ! b
. - g 4 2
+l'23< >< ! cz><—]i> Foe e (D18)
12 sin® g L+E& o

For vehicles of interest in this report the fina. term shown above in this
equation is always negligibly small but the preceding term can be important for
"small light" entry bodies (very large B/rb The value of &5 is only impor-
tant for "large heavy" entry bodies (very small B). Values of Qy, and Q1,,
and @7, and &1, (corresponding to Jj, and j, of egs. (37) and (38)) are given
in tables IV and I1I, respectively.
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Equation (D18) can be written in the form of equations (145) and (L46) if we

set
. A
c Jein 26
¥y, = = L7630 S €
2 sin2 Og¢ sin® 6
and ? (D19)
c Jsin 26
¥, = —& - z.opaot %
2 sin® ¢ sin® o
/

Values for these functions are given in table I.
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APPENDIX E

TURBULENT CONVECTIVE HEAT TRANSFER

Method of Estimation

Turbulent heat-transfer rates for pointed cones at flight speeds up to
30,000 m/sec were estimated by use of Colburn's modified Reynolds analogy, ref-
erence 39, and the reference enthalpy method. The latter is a generalization to
the case of a dissociating gas at high temperature of the reference temperature
or T' method described in reference LO. The T' method has been compared with
measurements of skin friction and heat transfer for turbulent boundary layers in
subsonic, supersonic, and hypersonic flow of air in or near the ideal gas temper-
ature range, and is found to represent existing experiments unusually well (see,
e.g., refs. 41 and 42). Of course, no experience exists for the much higher
speeds considered here, and, in light of the purely empirical nature of the
method, the degree of accuracy of these estimates cannot be presently determined.
However, the excellent experience at supersonic Mach numbers below 10 encourages
us to expect realistic values of heat-transfer prediction in the higher speed
range.

The T' equation of reference 40 is
T o Tw
= =1+ 0.035 M2 + 0,45 (X (E1)
Te Te
which may, for the ideal gas considered in that reference, be written in the form

' T T
L1 100175 (5B 1>+o.1+5 <J—’- 1> (E2)
T Te

Te €

where Tsp is the stagnation point temperature. These equations define the
temperature T' within the boundary layer at which to evaluate the density and
viscosity so that the incompressible skin friction equation is applicable to the
compressible flow boundary layer considered. The generalization to high tempera-
ture flow of equation (E2) is assumed to be

h' hep hy
E—_1+o.175 T-1>+o.45 <}T€"l> (E3)

€ €

which reduces to equation (E2) for a gas with constant specific heat. Here,
(hgp/he) - 1 = (1/2)(ue®/he).*t Given h' as defined by equation (E3) and the

1Although the details will not be given here, it can be shown starting from
equation (E3) that the reference enthalpy is approximately a fixed fraction of
the stream total enthalpy for any cone angle, the fraction being a direct
function of the cone angle.
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local static pressure on the cone, the state of the gas at the reference enthalpy
condition is fully specifiied and the reference density p' may be obtalned from
reference 36 and the reference viscosity W' may be obtained from reference 37

or 38. The Reynolds number Re' given by p'uex/p' is then inserted in the
incompressible turbulent skin-friction formula to obtain Cp', which is related

to the average skin friction over the surface Cp by

1 2 11-_12
Cr 5 Pele” = Cr 5 P'le

or
Cpee = Cp'e!

The variation with Reynolds number of average skin friction coefficient on
a flat plate in incompressible flow was taken to be that given by the KArmAn-
Schoenherr formula

= log;, ReCp; (Ek)

which can be very closely approximated for Reynolds numbers from 3x10® to 10° by
the power law formla

0.0317

The turbulent skin friction wvalues for a flat plate were modified by the factor
1.0k47, derived in appendix C of reference 39, to make them applicable to cones.

The Colburn modification of the Reynolds analogy

C
St = —~¥25ﬂ§ (E6)
EPI'W

was then applied to obtain the dimensionless heat-transfer parameter, the Stanton
number, defined by

St = a/dt (ET)
pcle(hsp - by)Ay

where Ay 1s the wetted area of the cone. From dH/dt, CHy ~ may be obtained
@

from its definition, equation (4) of the text.

The above steps describe the procedure used. A summary equation approxi-
mating these steps may be written
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_ 0.0166 p' ©ot ¢
(p'uex-b/p.' )Oo 148 o) PrW2/3

Chg_ (E8)

in which ue/V = cos 6¢ and (hgp - hy)/VZ = 1/2 have been applied along with the
approximation given by equation (E5) for the KArmAn-Schoenherr formula.

Expression in Terms of Free-Stream Variables

Equations (E8) and (E3) describe, in reasonably simple terms, the heat-
transfer coefficient for the turbulent boundary-layer case, but they are not
suitable for incorporation in the optimization analysis of this paper because
they are expressed in terms of p' and u', the variation of which with speed,
cone angle, and free-stream density is not immediately evident. The point of
departure for finding CHto as a function of V, 6, and 5 was not equation (E8),

but was based on the observation that for any altitude and base radius, the
Stanton number was a nearly linear function of 6¢, almost independent of veloc-
ity. This is shown in figure 41 for an altitude of 35 km. The equation for
Stanton number obtained from plots of this kind for altitudes of 20, 35, and

50 km is

_ 2.4 f¢c

St (£9)
5 0.148_0.165
10 I"b 0

where ©6¢ 1s in degrees and 1, 1in meters. The fact that the exponent of f
is here found empirically to differ a little from 0.1l48 reflects the dependence
of the Stanton number on p'/p and u'/u which vary with altitude for any given
cone angle.

From equations (E7), (E9), and (L) in the text,

o, = 2.47 o¢ peue<hsp - hy)Ay
tO l05 I._bO . 14850 . 165 (1/2) QVSA
2.47 f¢c Pe
C 105 rb0.14850-165 ry cot &g (E10)

where ue/V = cos 8¢, hgp - by = V2/2, and Ay/A = 1/sin 6¢ have been applied.

In addition, the density ratio across the shock wave, pe/p, may be correlated in
terms of the velocity component normal to the shock wave, V sin 6y = U, as shown
in figure 42, Two regions exist. For U < 7500 m/sec, the density ratio
increases with increasing speed approximately as

Pe _ 0.0356

. 0.66
5 56.055 (V sin oy) (E11)
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For U > 7500 m/sec, the density ratio becomes a slowly decreasing function of
increasing velocity.

Pe _ SM:5_ (V sin Gw) (E12)

0 - po 20.039

The accuracy of these expressions in relation to calculations for normal shock
waves in equilibrium air may be examined in figure 42. Inserting these relations
into equation (E10) leads to the expressions for CHJC given as equations (50)
and (51) of the text.

The values of CHy computed from the working equations (50) and (51) are

compared in figure 43 for a cone angle of 300 and a l-meter base radius with the
values computed by the complete estimation procedure based on equations (E3)

and (E6). The representation given by the working equations is generally ade-
guate although, for this cone angle, uniformly a little high. The values of con-
vective heat-transfer coefficient estimated for a laminar boundary layer on a

30° cone are reproduced on this figure for comparison and are computed to be
smaller than those for a turbulent boundary layer by factors ranging from 3 to
40, depending on the speed and altitude.

Evaluation of Turbulent Convective Energy Fraction

To solve equations (53a) and (53b) we make the assumption that when 5 2 1
the exponential e~ A is so small that we may substitute unity for (1 + Ere” PY).
With this simplification equations (53a) and (53b) become
for

v S _1299_
sin By
ky
N = Bo-&°4 [Ctl<2 6c cos O¢ > f°° (11 "o > e-(l+?)x o
- .14 _ t .
t I.bo 148 VEkl oipfl 6y sin3 6 o +tpe A 40204
ky
Sty 9c cos ¢ @ e"<l+2?)x ax
k1< JF 0.204 (E13)
VEF\2 gin® 1oy sind 6’ YB X
and for
y2 1500
~ sin 8y
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ky
- -

ne = Bo.2o4 ctl < eC cos GC >f <l - 0g +Ut> e ( 2) ax
t 7 0.148 - 0.204
Ty VEkl 2 gin’d Oy sin® 6 VE sin 9W> 1+ ¢Ere X X

¢ X=21n 7500
VEsin6w> k
2Zn< - D2
Ctp 6¢ cos 6g Teee L - o o EX i
* ko ko X * 0% 0.204
Vg 2 sin - 6y sin3 6¢” Yo 1+ Eee X
o -(1+ l)X
) Ct, < B¢ cos 6 >f ax (ELL)
VEkl 2 sin®l oy sin® 6/ VB x O+ E0%
where g
® = Bf)

In equation (Elh), the first two integral terms, in addition to being functions
of ot and £, are functions of 6p and Vg in a way which is not easily sepa-
rable. For the purposes of this paper it was deemed advisable to leave the sum-
mation in this inseparable form so that a two-entry table is required for tabula-
tion, and each table, in turn, must be made up for a particular value of oy and
gt Accordingly, we may put in the form of equation (55)

g0+ 204
Mt = ~o.148 [At Op¥e < >
b

if we set

- 6 cos 6 0 sin®:8® gy cos 6
¥, = = ey, X10 k1 < c c > = 0.202x1073 < ¢ — i C> (E15)
2 sin”t oy sin® 6p sin® 6¢
® _-0.87X
e ax
o = fB — gt (E16)
while for
v < 1200
~ sin oy
k
-( 1%
Cty 6 cos 6¢ 1 - og e e ax
bt = VgL <;- k1 : L. X % 0.204 (E17)
E in™t gy sin® o¢ 1 + Eqe b
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and for

vz 1590
T sin &y
k
()X x
i + 0 > = 204
Ct, < 6¢ cos B¢ >f <l - e-x ) =
) i V sin 6y 1
B QVEkl sin't ey sin® O¢” 5 50 E7500 >
k
VE sin 9w> —(l+?2)x dX
2Zn‘7500 l‘ct +O>e .
ct . 6 cos O 7 4>f - : e-X ) =
2 ) -
+ : 5
EVEk‘g <s ink2 8y sin3 9¢/ Y¥%=o0

(r18)
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APPENDIX F

RELATION OF THE LIMITING REYNOLDS NUMBER TO THE BALLISTIC

COEFFICIENT, CONE ANGLE, AND ENTRY VELOCITY

Since the relationship between flight velocity and air density is a function
of the entry velocity and ballistic coefficient B (eq. (8)), it is evident that
the Reynolds number based on free-stream properties will be governed by these
factors and the body size.

oVry,  PVER, -
Re, = = pe
00 m m o]

(B/2)p

(F1)

For an isothermal atmosphere in which the free-stream viscosity is constant, and
for cases where 1, 1is not importantly diminished by ablation, the maximum value
of Reyn on the trajectory can be found by setting the derivative dRew/dﬁ equal
to zero to obtain

ji_poVErb

R = F2
e°°ma.x Be 9! ( )

where e is the Napierian base. Equation (F2) is plotted in figure Lb for an
entry velocity of 30 km/sec and 1, = 1 meter, for which case values of Reewpqy
in excess of 10 million occur at B 1less than about 265. It is of interest that
the peak Reynolds number according to equation (Fl) occurs at a velocity

V = Vg/e, and at a density {§ = 2/B. The Reynolds number profile defined by
equation (F1) is plotted in figure 45 as a function of the velocity ratio V/VE.

It remains to relate the free-stream Reynolds number defined by equa-
tion (F1l) to the Reynolds number based on boundary-layer edge properties and
slant length, Rec = peuex/ue. All flow-field properties needed for this purpose
are obtainable from the calculations of the conical flow field described in
appendix B, with the use of air properties tabulated in references 36, 37,
and 38. Ratios of local to free-stream Reynolds number obtained from these cal-
culations are shown in figure L6.

Since the present purpose was to define limiting values of B below which
the local Reynolds number will exceed 5, 10, or 20 million, the following pro-
cedure was applied. Assume for the moment that the Reynolds number ratios of
figure 46 are functions of cone angle only, independent of speed and altitude.
Then the maximum of the local Reynolds number will occur simultaneously with the
maximum of the free-stream Reynolds number, and

Ree 2 PoVmTp Ree
Re = Re = R _ .
€max max Coomax R Be o

=

(F3)

Rey
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If Reepgox is not to exceed the limiting Reynolds number Reliﬁ of the text,
then the former is replaced in equation (F3) by the latter to give the value

PoVETL Re
B = 2 o' E"b € (Fh)
eRelim_ H Reg

corresponding to the specified Reynolds number limitation. Lower values of B
will result in local Reynolds numbers exceeding Reqjiy.

As may be seen from figure h6, the assumption that Ree/Ra>° is a constant
for any cone angle is reasonable for cone angles up to 4O° at speeds up to
25 km/sec, and to higher speeds for smaller cone angles. Obviously, large depar-
tures from constant Ree/Reoo occur on the 40° and 550 cones at speeds above
20 to 25 km/sec. The error resulting from the assumption of constant Rec/Rew
in this latter range is not important for present purposes, however, because the
optimum cone angle in the very high entry speed range is less than 33° (see
fig. 10). Hence, the value of B calculated from equation (F4) by use of this
assumption will be in serious error only for conditions well away from the opti-
mim, and the effect on conditions near the optimum will be small. It is of
interest to note that the effect of the nonconstancy of Ree/Raw on the dashed
curves of figure 9 is to cause them to rise more rapidly than shown for &g
greater than the optimum. The significance of this is that the turbulent flow
boundary is raised to higher values of B for the large angled cones. Since
these cone angles would presumably not be used, this may be of academic interest
only. It is clear that by use of equation (¥F1) and figure h6, values of maximum
local Reynolds number free of the above assumption can be obtained if desired.
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APPENDIX G
ARC~JET TESTS OF TEFLON MODELS

Tests to examine qualitatively the extent of the change in dimensions of
Teflon models due to laminar convective heating were made in an electrically
heated arc-jet stream. The Mach nunber of the stream was 3.3 and the enthalpy
level, 3500 Btu/lb (8.1x10%® m2/sec®). Total pressure was set at one atmosphere.
The Reynolds number based on model base diameter was 2140 and, accordingly, the
flow was laminar. The jet diameter was 2.75 inches (6.8 cm). Stream surveys
indicated the enthalpy and stagnation pressure were constant within 5 percent
over a 2-inch core (5 em). This assured uniform flow conditions over the conical
test bodies which were 1.5 inches (3.8 cm) in diameter.

The test conditions in this stream are far less intense, of course, than a
typical flight vehicle would experience at hyperbolic entry speeds (e.g., in
flight with a ballistic parameter of 200, heat rates would be as much as 50 times
those in these tests) and the jet enthalpy is so low that radiative heating of
these models is trivial. However, the model test results should be indicative of
the manner in which convective heating promotes the initial blunting of the apex
in flight.

For the flow conditions listed above for the present ablation tests, the
following table lists the magnitude of the stagnation-point heat-transfer rates
at 1 second after flow was started.

. . Btu/sec kg

Model designation qu’—_EEE__ qu’sec2
Passive type; ¢ = 0 930 1.05x107
c =.1 1440 1.63x107

c = .2 1660 1.88x107

c = .3 1850 2.10x107

Extrusion type; 1/l6-diameter rod 930 1.05%x107
1/8-diameter rod 930 1.05x107

1/k-diameter rod 930 1.05x107

Figure 47 shows the principal dimensions of the passive type models tested.
Basically, all of the passive type models are members of the same cusped-cone
family. The degree of sharpness of the nose of the cusped cone 1s determined by
the parameter c (see equation, fig. 47). For practical reasons of strength, all
models were terminated at a tip diameter of 1/64 inch. The notch on the cylin-
drical afterbody served as a measuring reference station.

The other type of model tested is shown in figure 48. This model consists
of a L5° cone with a cylindrical core of various diameters that could be extruded
at constant predetermined rates. Extrusion rates were set by adjusting a D.C.
motor-driven drive screw prior to each run. An "optimum" extrusion rate was
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found by trial. The optimum rate was defined such that the core tip just kept
pace with the ablation that occurred on the conilcal rays. For this case, the
profile shape remains essentially constant with time throughout the run.

The profile shape change with time was found for all models by measurements
from shadowgraph pictures taken during the run.
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[Code:

TABLE I.- FUNCTIONS OF 6¢

[Code: 0.76-n = 0.76X107%; 0.76+n = 0.76x10™]

¢ [sin 6y| Cp Ve ¥n ¥y, ¥, Yy

15 |0.267 |0.13 |0.76-1 |0.58-2 |1.86-3| 2.18-3 | 0.67-1
20 | .354 | .23 | .83-1 [1.81-2 |1.21-38| 1.42-3| .45-1
o5 | 438 | .36 | .90-1 | .b3-1| .86-3| 1.01-3| .33-1
30| .519| .50 | .98-1{ .8l-1| .65-3| .77-3| .26-1
35 | .595 | .66 |1.07-1 |1.50-1 | .52-3| .61-3| 2.03-2
W | 667 | .82 [1.18-1 [2.k1-1 | .Lho-3| .50-3| 1.65-2
L5 734 11,00 [1.31-1 .37 .35-8| .hl1-3] 1.35-2
50 | .795 |1.17 |1.47-1 | .52 .29-3| .35-3| 1.1l-2
55 | .848 |1.34 [1.63-1| .70 .25-3| .30-3| .91-2

TABLE II.- FUNCTIONS OF VR sin 6y
0.76-n = 0.76x107%; 0.76+n = 0.76X10%; Vg

in meters/sec]

Vr sin 6y Ze Vg sin Oy Zg
6,000 2.40-4 || 18,500 .68+2
6,500 .66-3 || 19,000 .76+2
7,000 1.66-3 || 19,500 . 8Ltz
7,500 .39-2 || 20,000 .9L+2
8,000 .88-2 || 20,500 1.02+2
8,500 1.86-2 || 21,000 1.11+2
9,000 .38-1 | 21,500 1.20+2
9,500 .Th-1 || 22,000 1.29+2

10,000 1.40-1 || 22,500 1.3%+2
10,500 2.58-1 || 23,000 1.48+2
11,000 .46 23,500 1.58+2
11,500 .80 24,000 1.68+2
12,000 1.36 24,500 L.77+2
12,500 2.26 25,000 1.87+2
13,000 .37+1 || 25,500 1.97+2
13,500 .59+1 || 26,000 2.07+2
14,000 .92+1 || 26,500 2.16+2
14,500 1.33+1 || 27,000 2.25+2
15,000 1.86+1 || 27,500 2.34+2
15,500 2.40+1 || 28,000 2.43+2
16,000 .31+2 || 28,500 2.50+2
16,500 .37+2 | 29,000 2.56+2
17,000 L6+2 | 29,500 2.6h+2
17,500 .52+2 | 30,000 2.69+2
18,000 .60+2
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TABLE IIT.- FUNCTIONS OF B

B

160
170
180
190
200
250
300
350
oo
450
500
600
700
800
900
1,000
2,000
3,000

[Code: 0.76-n = 0.76X107™; 0.76+n = 0.76x10"]
B On CDZ__L ®Z2 @t B on
0 0 1.77 2.75 1.56 25| 2.29-5
1[1.87-6 |2.79-1 | 1.00 .66 30| 2.59-5
2| .33-s 81-1} .54 .31 35| 2.86-5
31 .46-5|2.54-2| .32 1.49-1 (f LO| .31-2
41 .58-5| .83-221.88-1| .73-1] 45| .3k-4
5 .69-5 | 2.78-3 { 1.15-1 .36-1 | 50 .36-4
6] .80-5| .9h-3| .71-1]1.78-2 55 .38-4
71 .90-5| .32-3 | .hh-1| .89-2| 60| .LO-4
81 .99-5 |1.12-4 | 2.Th-2 | .bh-2{ 65 io-g
92.09-5 .39-4 | 1.73-2 | 2.23-3 )} 70 NIV
10 {1.18-5 [ 1.37-5 | 1.09-2 | 1.12-3 || 75| .46-a
11 f1.27-5| .48-5| .69-2| .56-3|| 80| .h7-2
12 11.36-5 | 1.71-6 oo [ 2.83-4 ] 85 L9-a
13 | 1.44-5 61-8 | 2.81-3 | 1.43-4 ] 90] .50-4
14| 1.50-5 { 2.15-7 | 1.80-3 | .72-4 ] 95 .52-4
15 | 1.60-5 1.15-3 | .36-4 [|100 | .53-4
16 | 1.68-5 Th-3 | 1.84-5 [|110 ] .56-4
17| 1.72-5 L7-3 .93-5 || 120 .58-4
18| 1.82-5 .31-3 | .h7-5(l130| .60-4
19| 1.89-5 1.97-¢ | 2.39-6 140 | .62-4
20 { 1.96-5 1.27-2 | 1.21-8 |[150 | .64-4
TABLE IV.- FUNCTIONS OF ¢,
[Code: 0.76-n = 0.76x1070; 0.76+n = 0.76x101]
E1 ] Q1 Q5 Er ] 91,
Ol 1.77 2.75 Q0 | 2.4p-1
5| .46 1.0k 100 | 2.29-1
10| 2.82-1 | .75 110 | 2.18-1
15| 2.06-1 | .61 120 | 2.09-1
20 | 1.6h-1 | .53 | 130 | 2.00-1
251 1.37-1 b7 140 {1.93-1
30 { 1.18-1 | .43 150 | 1.86-1
35| 1.04-1 | .39 200 | 1.61-1
Lol .93-1| .37 250 | 1.43-1
L | .8h-1 | .35 300 {1.31-1
50 | .T6-1| .33 [350 |1.21-1
550 .71-1 | .31 400 | 1.13-1
60| .65-1|2.98-1
65| .61-1|2.86-1
0] .57-1|2.76-1
75 She1 | 2.66-1
80 .51-1 2.57-31 J

1.00-4
1.00-4




[Code: 0.76-n

TABLE V.- VALUES OF Ag

0.76x10™™; 0.764n = 0.

76x10™]

(a) Subliming Teflon ablator, Kt = Lx10"% sec®/m2, or = 0.1

Vi, oc
m/sec
15° 2009 259 30° 359 Loo 459 509 559
8,000 | 0.53-1 | 0.36-1 | 2.61-2 | 2.01-2 | 1.60-2 | 1.30-2 | 1.07-2 [0.88-=2 |0.T2-2
10,000 | .53-1 | .35-1|2.60-2|2.00-2 | 1.59-2| 1.29-2 |1.06-=2| .87-2] .71-2
12,000 .51 .35-1 | 2.56-2|1.98-2}| 1.57T-=2] 1.27-2 | 1.0k4-2 .85-2 .69-2
14,000 .51-1 .35-1 [ 2.532[1.95-2}| 1.54-2 | 1.24-2 | L.01-2 822 .68-2
16,000 50-1| .34-1}{2.49-2|1.91-2|1.51-2| 1.21-2 .98-2 | .79-=2| .bh-2
18,000 .50-1 | 3Lh-r | 2462 | 1.87-2| L.47-2 | 1.17-2| .9h-2| .77-2| .62-2
20,000 .4g-1 .33-1 | 2.k2-2{1.83-2 | 1.43-2 | 1.14-2 .92-2 .75-2 .61 -2
22,000 Lho-1 .33-1|2.38-2}11.80-=2|1.4%0-=2|1.11-2 .90 -2 .73-2 .59-2
24,000 .49-1 .33-1 | 2.3k2|1.76-2| 1.37-2 | 1.09-2 .88-2 7l-2 .58-2
26,000 48-1 .32-1 | 2.31-2 | 1.73-2 | 1.34-2 | 1.07-2 B6-2 | .70-2| .56-2
28,000 481 .32-1 | 2.28-2 | 1.70-2 | 1L.32-2] 1.05-2 8h-2 .68-2 .55-2
30,000 8- .32-1 | 2.25-2 | 1.68-2| 1.30-2 | 1.03-2 .83 -2 67 -2 .5h-2
(b) Vaporizing quartz ablator, Ki = 0.5%x10-8 Sec2/m2, ot = 0.1

8,000 82-1 .56 -1 41 .31-1] 2.50-2 | 2.03-2 | 1.66-2 | 1L.37-2 | 1.12-2
10,000 | .90-1| .6l-1 5.1 3h-1 | 2732 | 2.22-211.82-2 | 1.49-2 | L.22-2
12,000 .96 -1 .65-1 R Ty g § .37-1| 2.90-2 | 2.35-2 | 1.91-2 | 1.56-2 | 1.26-2
14,000 .99-1 .67 -1 .hg-1 .38-1| 3.00=2 | 2.41-2 | 1.95-2 | 1.58-2 | 1L..28-2
16,000 | 1.02-1 .69-1 .50-1 .39-1 | 3.0k-2 ] 2.42-2 | 1.95-2 | 1L.58-2 | L.27-2
18,000 | 1.03-1 .70-1 .51-1 .39-1 ] 3.03-2 | 2.41-2 | 1.94-2 | 1.56-2 | 1.26-2
20,000 | 1.04-1 .70-1 .51-1 .39-1] 3.00-2| 2.38-2 | 1L.91-2 | 1.54-2 | 1.25-2
22,000 | 1.05-1 71l-1 .51-1 .38-1 | 2.97-2| 2.35-2 | 1.89-2 | 1.52-2 | 1L.23-2
24,000 | 1.05-1 .70 -1 .50-1 .38-1 | 2.92-2 | 2.31-2 | 1.86-2 | 1.50-2 | 1L.21-2
26,000 | 1.05-1 .70-1 .50-1 .37-1)2.88-2|2.27-2|1.83-2 | L.U47-2 | 1L.19-2
28,000 | 1.0k~ .69-1 49-1 .37-1) 2.83-2 | 2.24-2 | 1.79-2 | L.45-2 | 1.17-2
30,000 | 1.04-1 .68-1 48 .36-1| 2.78-2| 2.20-2 | L.76-2 | 1.42-2 | 1.15-2
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Figure 1l.- Barth entry speed for minimum transit time from Mars and Venus.

Figure 2.- Velocity vectors for conical bodies.
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Figure k4.- Variation of the laminar energy fraction with entry speed for cones
having a ballistic parameter of 200, Teflon ablators, and various cone
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Figure 3.- Variation of the laminar energy fraction with entry speed for a
30° half-angle cone with a ballistic parameter of 200 and a Teflon
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(b) Vaporizing quartz ablator.

Figure 5.- Variation of the envelope values of laminar energy fraction with
entry speed and ballistic parameter.
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Figure 6.- Variation of the turbulent energy fraction with entry speed for a
30° half-angle cone with a ballistic parameter of 20 and a Teflon &blator.
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Figure 7.~ Variation of the turbulent energy fraction with entry speed for cones
having a ballistic parameter of 20, Teflon ablators, and various cone half-

angles.
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Figure 10.- Constants for evaluation of optimum conical bodies with laminar flow.
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Figure 11.- Comparison of optimum energy fractions of Teflon and vaporizing
quartz for a limit Reynolds number of 107.
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Figure 12.- Generalized mass-loss factor as a function of entry speed.
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Figure 15.- Trajectory angle requirements for maintenance of laminar flow for
an entry body having typical space-probe characteristics.

o

—

% el

: _ 6\(\(“/5 —-‘\\

S AN

8 3 }/ \\ \

= v\

> NN

2, s = N\

2 N N\ '\ Laminar flow

b N \

£ \\ AT

s | Turbulent flow \ \\ \

E NN NN

— ~ -~ N o

o N e ————

@] 0 ] | | | ] | ] J
2 5 10 20 50 00 200 500 1000

Ballistic parameter, &

Figure 16.- Variation of minimum energy fraction with ballistic parameter for
several entry speeds.

Th



\l
O
|

Optimum cone half-angle, ecopt , deg

60

50 I~
Ve = IS km/sec /
}’—_——s\\_— —_

20
10 Turbulent flow Laminar flow
0 ] ] | | ] ] | _J

2 5 10 20 50 I00 200 500 1000

Ballistic parameter, &

Figure 17.- Variation of cone half-angle corresponding to minimum energy
fraction with ballistic parameter for several entry speeds.



76

Figure 18.- Conical body before and
h. = 3500 Btu/lb; Dgp = 0.11k atm;

A-30693

after exposure to arc-jet stream;
M = 3.3; exposure time = 18 sec.



Figure 19.- Profile shape change during ablation for 45° conical body;
base radius = 0.75 inch; time interval = 6 sec.
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A-30694

0.1) before and after exposure to arc-jet

Figure 20.- Cusped-cone shape (c =
= 0.114 atm; M = 3.3; exposure time = 18 sec.

stream; hy = 3500 Btu/lb; Psp
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Figure 2L.- Profile shape change during ablation for the cusped-cone body
(¢ = 0.1); base radius = 0.75 inch; time interval = 6 sec.

9



Figure 22.- Cusped-cone shape (
stream; h. = 3500 Btu/lb; Psp

80

1 Q

= 0.

= O
[N

A-30842

3) before and after exposure to arc-jet
4 atm; M = 3.3; exposure time = 18 sec.



Figure 23.- Profile shape change during sblation for the cusped-cone body
e = 0.3); base radius = 0.75 inch; time interval = 6 sec.
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Figure 2k.- Conical body shape (45°) with a 1/16-inch-diameter
extruded rod.
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A-30818
Figure 25.- Conical body shape (45°) with a 1/8-inch-diameter
extruded rod.
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Figure 26.- Conical body shape (45°) with a 1/4-inch-diameter
extruded rod.
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A-30695, 1

Figure 27.- Conical body with a l/l6-inch-diameter rod extruded during exposure
to arc-jet stream; h,. = 3500 Btu/lb; Pgp = 0.114 atm; M = 3.3; exposure
time = 18 sec; feed rate = 0.057 in/sec.
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Figure 28.- Profile shape change during eblation for a 45° cone with a l/l6-inch—
diameter extruded core; base radius = 0.75 inch; time interval = 6 sec;
feed rate = 0.057 in/sec.
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Figure 29.- Conical body
to arc-jet stream; hy

A-30840

with a 1/8-inch-diameter rod extruded during exposure
= 3500 Btu/1b; Psp = 0.11hk atm; M = 3.3; exposure

time = 18 sec; feed rate = 0.034 in/sec.
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Figure 30.- Profile shape change during ablation for a 45° cone with a l/8-inch-
diameter extruded core; base radius = 0.75 inch; time interval = 6 sec;
Teed rate = 0.034 in/sec.
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A-30839

Figure 31.- Conical body with a l/h—inch—diameter rod extruded during exposure
to arc-jet stream; ht = 3500 Btu/lb; Pgp = 0.114 atm; M = 3.3; exposure
time = 18 sec; feed rate = 0.02L in/sec:.
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Figure 32.- Profile shape change during ablation for a 45° cone with a 1/L-inch-
diameter extruded core; base radius = 0.75 inch; time interval = 6 sec;
feed rate = 0.024 in/sec.
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Figure 33.- Equilibrium radiation rate per unit volume of a normal-shock gas cap
as a function of flight speed and altitude.
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Figure 34.- Dependence of equilibrium radiation on air density.
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Figure 35.- Dependence of shock-wave-angle increment on cone half-angle and air
density Jump due to shock compression.
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Figure 37.- Nonequilibrium radiation intensity as a function of wvelocity
normal to the shock wave.
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Figure 38.- Variation of the density-viscosity factor as a function of
altitude and speed.




002

[
#, 00
oLt 1 ] ] 1 I
002 198 . fin26,
e A el
.
4 Method of ref 35
q@ 0.0l |- s’ .
= 30°
7 3s52.fin2g, ¢
ng 104 V27,
ob i ] ] ! !
0.02
c
% 0ol
L L 1 | I

I |
o 6 0 14 18 22 26 x 103
V, m/sec

Figure 39.- Variation of heat-transfer coefficient with speed at 50 km altitude
for several cone angles and a base radius of 1 meter.
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Figure 40.- Variation of heat-transfer coefficient with speed for 30° cone angle
at three altitudes for a base radius of 1 meter.
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Figure 4l.- Stanton number variation with cone angle and speed.
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Figure 42.- Density ratio as a function of free-stream velocity component

normal to the shock wave.
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Figure L43.- Estimated heat-transfer coefficients for turbulent boundary layer
compared with working equations and laminar boundary-layer values.
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Figure Uk.- Maximim free-stream Reynolds number during entry as a function
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Figure U5.- Variation of free-stream Reynolds number during entry.
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Figure 47.- Cusped-cone models.
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Figure 48.- Extruding apex models.
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